Aix Marseille Univ, INSERM, IRD, SESSTIM Sciences Economiques & Sociales de la Santé & Traitement de l'Information Médicale, Marseille, France.
Unité de Biométrie, Institut du Cancer de Montpellier (ICM), Univ Montpellier, Montpellier, France.
BMC Med Res Methodol. 2019 May 16;19(1):104. doi: 10.1186/s12874-019-0747-3.
Net survival, a measure of the survival where the patients would only die from the cancer under study, may be compared between treatment groups using either "cause-specific methods", when the causes of death are known and accurate, or "population-based methods", when the causes are missing or inaccurate. The latter methods rely on the assumption that mortality due to other causes than cancer is the same as the expected mortality in the general population with same demographic characteristics derived from population life tables. This assumption may not hold in clinical trials where patients are likely to be quite different from the general population due to some criteria for patient selection.
In this work, we propose and assess the performance of a new flexible population-based model to estimate long-term net survival in clinical trials and that allows for cause-of-death misclassification and for effects of selection. Comparisons were made with cause-specific and other population-based methods in a simulation study and in an application to prostate cancer clinical trial data.
In estimating net survival, cause-specific methods seemed to introduce important biases associated with the degree of misclassification of cancer deaths. The usual population-based method provides also biased estimates, depending on the strength of the selection effect. Compared to these methods, the new model was able to provide more accurate estimates of net survival in long-term clinical trials.
Finally, the new model paves the way for new methodological developments in the field of net survival methods in multicenter clinical trials.
净生存是一种衡量仅死于研究癌症的患者生存情况的指标,可使用“病因特异性方法”(当死因已知且准确时)或“基于人群的方法”(当死因缺失或不准确时)来比较治疗组之间的净生存情况。后者的方法依赖于一个假设,即因其他原因而非癌症导致的死亡率与具有相同人口统计学特征的一般人群中的预期死亡率相同,这些特征来自人口生命表。由于某些患者选择标准,临床试验中的患者可能与一般人群有很大不同,因此这种假设可能不成立。
在这项工作中,我们提出并评估了一种新的灵活的基于人群的模型,以估计临床试验中长期净生存情况,该模型允许死因分类错误,并考虑选择效应。在模拟研究和前列腺癌临床试验数据的应用中,与病因特异性和其他基于人群的方法进行了比较。
在估计净生存时,病因特异性方法似乎会引入与癌症死亡的分类错误程度相关的重要偏差。通常的基于人群的方法也会提供有偏差的估计,具体取决于选择效果的强度。与这些方法相比,新模型能够更准确地估计长期临床试验中的净生存情况。
最后,新模型为多中心临床试验中净生存方法领域的新方法学发展铺平了道路。