Suppr超能文献

使用伪观测值进行相对生存率估计。

Using pseudo-observations for estimation in relative survival.

机构信息

Faculty of Medicine, Institute for Biostatistics and Medical Informatics, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.

出版信息

Biostatistics. 2019 Jul 1;20(3):384-399. doi: 10.1093/biostatistics/kxy008.

Abstract

A common goal in the analysis of the long-term survival related to a specific disease is to estimate a measure that is comparable between populations with different general population mortality. When cause of death is unavailable or unreliable, as for example in cancer registry studies, relative survival methodology is used-in addition to the mortality data of the patients, we use the data on the mortality of the general population. In this article, we focus on the marginal relative survival measure that summarizes the information about the disease-specific hazard. Under additional assumptions about latent times to death of each cause, this measure equals net survival. We propose a new approach to estimation based on pseudo-observations and derive two estimators of its variance. The properties of the new approach are assessed both theoretically and with simulations, showing practically no bias and a close to nominal coverage of the confidence intervals with the precise formula for the variance. The approximate formula for the variance has sufficiently good performance in large samples where the precise formula calculation becomes computationally intensive. Using bladder cancer data and simulations, we show that the behavior of the new approach is very close to that of the Pohar Perme estimator but has the important advantage of a simpler formula that does not require numerical integration and therefore lends itself more naturally to further extensions.

摘要

在分析与特定疾病相关的长期生存时,一个常见的目标是估计一种在具有不同一般人群死亡率的人群之间具有可比性的度量。当死因不可用或不可靠时,例如在癌症登记研究中,就会使用相对生存方法——除了患者的死亡率数据外,我们还使用一般人群的死亡率数据。在本文中,我们专注于总结疾病特异性风险信息的边缘相对生存度量。在每个死因的潜在死亡时间的附加假设下,该度量等于净生存。我们提出了一种基于伪观测的新估计方法,并推导出其方差的两个估计量。新方法的性质在理论和模拟方面都进行了评估,结果表明,在具有精确方差公式的大样本中,该方法实际上没有偏差,并且置信区间的覆盖率接近名义值。方差的近似公式在精确公式计算计算量大的大样本中具有足够好的性能。使用膀胱癌数据和模拟,我们表明新方法的行为非常接近 Pohar Perme 估计量,但具有更简单的公式的重要优势,该公式不需要数值积分,因此更自然地适用于进一步扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验