Suppr超能文献

肌球蛋白 1c 通过调节转化生长因子-β 信号通路和足细胞纤维化发挥作用。

The motor protein Myo1c regulates transforming growth factor-β-signaling and fibrosis in podocytes.

机构信息

Department of Medicine, Nephrology Division, Medical University of South Carolina, Charleston, South Carolina, USA.

Department of Medicine, Renal Electrolyte and Hypertension Division, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Kidney Int. 2019 Jul;96(1):139-158. doi: 10.1016/j.kint.2019.02.014. Epub 2019 Mar 4.

Abstract

Transforming growth factor-β (TGF-β) is known to play a critical role in the pathogenesis of many progressive podocyte diseases. However, the molecular mechanisms regulating TGF-β signaling in podocytes remain unclear. Using a podocyte-specific myosin (Myo)1c knockout, we demonstrate whether Myo1c is critical for TGF-β-signaling in podocyte disease pathogenesis. Specifically, podocyte-specific Myo1c knockout mice were resistant to fibrotic injury induced by Adriamycin or nephrotoxic serum. Further, loss of Myo1c also protected from injury in the TGF-β-dependent unilateral ureteral obstruction mouse model of renal interstitial fibrosis. Mechanistic analyses showed that loss of Myo1c significantly blunted TGF-β signaling through downregulation of canonical and non-canonical TGF-β pathways. Interestingly, nuclear rather than the cytoplasmic Myo1c was found to play a central role in controlling TGF-β signaling through transcriptional regulation. Differential expression analysis of nuclear Myo1c-associated gene promoters showed that nuclear Myo1c targeted the TGF-β responsive gene growth differentiation factor (GDF)-15 and directly bound to the GDF-15 promoter. Importantly, GDF15 was found to be involved in podocyte pathogenesis, where GDF15 was upregulated in glomeruli of patients with focal segmental glomerulosclerosis. Thus, Myo1c-mediated regulation of TGF-β-responsive genes is central to the pathogenesis of podocyte injury. Hence, inhibiting this process may have clinical application in treating podocytopathies.

摘要

转化生长因子-β(TGF-β)在许多进行性足细胞疾病的发病机制中起着关键作用。然而,调节足细胞中 TGF-β信号的分子机制尚不清楚。我们使用足细胞特异性肌球蛋白(Myo)1c 敲除,证明 Myo1c 是否对足细胞疾病发病机制中的 TGF-β信号至关重要。具体来说,足细胞特异性 Myo1c 敲除小鼠对阿霉素或肾毒性血清诱导的纤维化损伤具有抗性。此外,Myo1c 的缺失也可防止 TGF-β依赖性单侧输尿管梗阻小鼠模型中肾间质纤维化的损伤。机制分析表明,Myo1c 的缺失通过下调经典和非经典 TGF-β途径显著削弱了 TGF-β信号。有趣的是,我们发现核 Myo1c 而不是细胞质 Myo1c 通过转录调控在控制 TGF-β信号中发挥核心作用。核 Myo1c 相关基因启动子的差异表达分析表明,核 Myo1c 靶向 TGF-β反应基因生长分化因子(GDF)-15,并直接与 GDF-15 启动子结合。重要的是,发现 GDF15 参与了足细胞发病机制,局灶节段性肾小球硬化症患者肾小球中 GDF15 上调。因此,Myo1c 介导的 TGF-β 反应基因的调节是足细胞损伤发病机制的核心。因此,抑制这一过程可能在治疗足细胞病方面具有临床应用价值。

相似文献

1
The motor protein Myo1c regulates transforming growth factor-β-signaling and fibrosis in podocytes.
Kidney Int. 2019 Jul;96(1):139-158. doi: 10.1016/j.kint.2019.02.014. Epub 2019 Mar 4.
2
Targeting myosin 1c inhibits murine hepatic fibrogenesis.
Am J Physiol Gastrointest Liver Physiol. 2021 Jun 1;320(6):G1044-G1053. doi: 10.1152/ajpgi.00105.2021. Epub 2021 Apr 28.
4
Effects of TGF-beta on podocyte growth and disease progression in proliferative podocytopathies.
Kidney Blood Press Res. 2010;33(1):24-9. doi: 10.1159/000285844. Epub 2010 Feb 23.
6
Btg2 Promotes Focal Segmental Glomerulosclerosis via Smad3-Dependent Podocyte-Mesenchymal Transition.
Adv Sci (Weinh). 2023 Nov;10(32):e2304360. doi: 10.1002/advs.202304360. Epub 2023 Sep 25.
7
SMAD3-dependent and -independent pathways in glomerular injury associated with experimental glomerulonephritis.
Am J Physiol Renal Physiol. 2019 Jul 1;317(1):F152-F162. doi: 10.1152/ajprenal.00406.2018. Epub 2019 May 29.
8
Pathogenic role of TGF-β in the progression of podocyte diseases.
Histol Histopathol. 2011 Jan;26(1):107-16. doi: 10.14670/HH-26.107.
9
Mechanisms and consequences of TGF-ß overexpression by podocytes in progressive podocyte disease.
Cell Tissue Res. 2012 Jan;347(1):129-40. doi: 10.1007/s00441-011-1169-7. Epub 2011 May 4.

引用本文的文献

1
Liraglutide Promotes Diabetic Wound Healing via Myo1c/Dock5.
Adv Sci (Weinh). 2024 Oct;11(39):e2405987. doi: 10.1002/advs.202405987. Epub 2024 Aug 19.
2
Myosin1G promotes Nodal signaling to control zebrafish left-right asymmetry.
Nat Commun. 2024 Aug 2;15(1):6547. doi: 10.1038/s41467-024-50868-y.
3
Recessive variants in MYO1C as a potential novel cause of proteinuric kidney disease.
Pediatr Nephrol. 2024 Oct;39(10):2939-2945. doi: 10.1007/s00467-024-06426-1. Epub 2024 Jun 21.
4
Recessive variants in MYO1C as a potential novel cause of proteinuric kidney disease.
Res Sq. 2024 Apr 11:rs.3.rs-4183332. doi: 10.21203/rs.3.rs-4183332/v1.
6
RAB31 in glioma-derived endothelial cells promotes glioma cell invasion via extracellular vesicle-mediated enrichment of MYO1C.
FEBS Open Bio. 2024 Jan;14(1):138-147. doi: 10.1002/2211-5463.13736. Epub 2023 Nov 20.
7
Deconvolution of Focal Segmental Glomerulosclerosis Pathophysiology Using Transcriptomics Techniques.
Glomerular Dis. 2021 Jul 14;1(4):265-276. doi: 10.1159/000518404. eCollection 2021 Oct.
9
Does the Actin Network Architecture Leverage Myosin-I Functions?
Biology (Basel). 2022 Jun 29;11(7):989. doi: 10.3390/biology11070989.

本文引用的文献

2
Myosin-1C uses a novel phosphoinositide-dependent pathway for nuclear localization.
EMBO Rep. 2018 Feb;19(2):290-304. doi: 10.15252/embr.201744296. Epub 2018 Jan 12.
3
TGFβ as a therapeutic target in cystic fibrosis.
Expert Opin Ther Targets. 2018 Feb;22(2):177-189. doi: 10.1080/14728222.2018.1406922. Epub 2017 Dec 13.
4
Targeting Obesity and Cachexia: Identification of the GFRAL Receptor-MIC-1/GDF15 Pathway.
Trends Mol Med. 2017 Dec;23(12):1065-1067. doi: 10.1016/j.molmed.2017.10.005. Epub 2017 Nov 9.
6
High-content screening assay-based discovery of paullones as novel podocyte-protective agents.
Am J Physiol Renal Physiol. 2018 Feb 1;314(2):F280-F292. doi: 10.1152/ajprenal.00338.2017. Epub 2017 Oct 18.
7
N-terminal splicing extensions of the human gene fine-tune the kinetics of the three full-length myosin IC isoforms.
J Biol Chem. 2017 Oct 27;292(43):17804-17818. doi: 10.1074/jbc.M117.794008. Epub 2017 Sep 11.
8
Deficiency of the Angiotensinase Aminopeptidase A Increases Susceptibility to Glomerular Injury.
J Am Soc Nephrol. 2017 Jul;28(7):2119-2132. doi: 10.1681/ASN.2016111166. Epub 2017 Feb 15.
9
Inhibition of TRPC6 channels ameliorates renal fibrosis and contributes to renal protection by soluble klotho.
Kidney Int. 2017 Apr;91(4):830-841. doi: 10.1016/j.kint.2016.09.039. Epub 2016 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验