Guinness Joseph
Department of Statistical Science, Cornell University, 1178 Comstock Hall, Ithaca, New York 14853, U.S.A.
Biometrika. 2019 Jun;106(2):267-286. doi: 10.1093/biomet/asz004. Epub 2019 Apr 3.
We introduce methods for estimating the spectral density of a random field on a [Formula: see text]-dimensional lattice from incomplete gridded data. Data are iteratively imputed onto an expanded lattice according to a model with a periodic covariance function. The imputations are convenient computationally, in that circulant embedding and preconditioned conjugate gradient methods can produce imputations in [Formula: see text] time and [Formula: see text] memory. However, these so-called periodic imputations are motivated mainly by their ability to produce accurate spectral density estimates. In addition, we introduce a parametric filtering method that is designed to reduce periodogram smoothing bias. The paper contains theoretical results on properties of the imputed-data periodogram and numerical and simulation studies comparing the performance of the proposed methods to existing approaches in a number of scenarios. We present an application to a gridded satellite surface temperature dataset with missing values.
我们介绍了从不完全网格化数据估计[公式:见正文]维晶格上随机场谱密度的方法。根据具有周期协方差函数的模型,将数据迭代地插补到扩展晶格上。这些插补在计算上很方便,因为循环嵌入和预处理共轭梯度方法可以在[公式:见正文]时间和[公式:见正文]内存中生成插补。然而,这些所谓的周期插补主要是因其能够产生准确的谱密度估计而受到推动。此外,我们引入了一种参数滤波方法,旨在减少周期图平滑偏差。本文包含关于插补数据周期图性质的理论结果,以及在多种场景下将所提出方法的性能与现有方法进行比较的数值和模拟研究。我们展示了对一个存在缺失值的网格化卫星地表温度数据集的应用。