Bertolacci Michael, Rosen Ori, Cripps Edward, Cripps Sally
University of Wollongong.
University of Texas at El Paso.
J Comput Graph Stat. 2022;31(2):436-454. doi: 10.1080/10618600.2021.2000870. Epub 2022 Jan 4.
We present the AdaptSPEC-X method for the joint analysis of a panel of possibly nonstationary time series. The approach is Bayesian and uses a covariate-dependent infinite mixture model to incorporate multiple time series, with mixture components parameterized by a time-varying mean and log spectrum. The mixture components are based on AdaptSPEC, a nonparametric model which adaptively divides the time series into an unknown number of segments and estimates the local log spectra by smoothing splines. AdaptSPEC-X extends AdaptSPEC in three ways. First, through the infinite mixture, it applies to multiple time series linked by covariates. Second, it can handle missing values, a common feature of time series which can cause difficulties for nonparametric spectral methods. Third, it allows for a time-varying mean. Through these extensions, AdaptSPEC-X can estimate time-varying means and spectra at observed and unobserved covariate values, allowing for predictive inference. Estimation is performed by Markov chain Monte Carlo (MCMC) methods, combining data augmentation, reversible jump, and Riemann manifold Hamiltonian Monte Carlo techniques. We evaluate the methodology using simulated data, and describe applications to Australian rainfall data and measles incidence in the US. Software implementing the method proposed in this paper is available in the R package BayesSpec.
我们提出了适用于联合分析一组可能非平稳时间序列的AdaptSPEC-X方法。该方法是贝叶斯方法,使用依赖协变量的无限混合模型来合并多个时间序列,混合成分由随时间变化的均值和对数谱参数化。混合成分基于AdaptSPEC,这是一种非参数模型,它能自适应地将时间序列划分为未知数量的段,并通过平滑样条估计局部对数谱。AdaptSPEC-X在三个方面扩展了AdaptSPEC。首先,通过无限混合,它适用于由协变量关联的多个时间序列。其次,它可以处理缺失值,这是时间序列的一个常见特征,会给非参数谱方法带来困难。第三,它允许均值随时间变化。通过这些扩展,AdaptSPEC-X可以在观测到的和未观测到的协变量值处估计随时间变化的均值和谱,从而进行预测推断。估计通过马尔可夫链蒙特卡罗(MCMC)方法进行,结合了数据扩充、可逆跳跃和黎曼流形哈密顿蒙特卡罗技术。我们使用模拟数据评估了该方法,并描述了其在美国澳大利亚降雨数据和麻疹发病率方面的应用。实现本文提出方法的软件可在R包BayesSpec中获取。