Lee Tae Kyoung, Wickrama Kandauda K A S, O'Neal Catherine W
Department of Public Health Sciences, University of Miami, Miami, USA.
Department of Human Development and Family Science, University of Georgia, Athens, USA.
Struct Equ Modeling. 2018;25(2):294-306. doi: 10.1080/10705511.2017.1375858. Epub 2017 Oct 16.
Latent growth modeling allows social behavioral researchers to investigate within-person change and between-person differences in within-person change. Typically, conventional latent growth curve models are applied to continuous variables, where the residuals are assumed to be normally distributed, whereas categorical variables (i.e., binary and ordinal variables), which do not hold to normal distribution assumptions, have been rarely used. This article describes the latent growth curve model with categorical variables, and illustrates applications using Mplus software that are applicable to social behavioral research. The illustrations use marital instability data from the Iowa Youth and Family Project. We close with recommendations for the specification and parameterization of growth models that use both logit and probit link functions.
潜在增长模型使社会行为研究者能够研究个体内部变化以及个体内部变化中的个体间差异。通常,传统的潜在增长曲线模型应用于连续变量,其中假设残差呈正态分布,而不符合正态分布假设的分类变量(即二元变量和有序变量)则很少被使用。本文介绍了具有分类变量的潜在增长曲线模型,并使用适用于社会行为研究的Mplus软件进行了应用说明。这些说明使用了来自爱荷华青年与家庭项目的婚姻不稳定数据。我们最后针对使用logit和probit链接函数的增长模型的设定和参数化提出了建议。