Mehta Paras D, Neale Michael C, Flay Brian R
Health Research and Policy Centers, University of Illinois at Chicago, USA.
Psychol Methods. 2004 Sep;9(3):301-33. doi: 10.1037/1082-989X.9.3.301.
A didactic on latent growth curve modeling for ordinal outcomes is presented. The conceptual aspects of modeling growth with ordinal variables and the notion of threshold invariance are illustrated graphically using a hypothetical example. The ordinal growth model is described in terms of 3 nested models: (a) multivariate normality of the underlying continuous latent variables (yt) and its relationship with the observed ordinal response pattern (Yt), (b) threshold invariance over time, and (c) growth model for the continuous latent variable on a common scale. Algebraic implications of the model restrictions are derived, and practical aspects of fitting ordinal growth models are discussed with the help of an empirical example and Mx script (M. C. Neale, S. M. Boker, G. Xie, & H. H. Maes, 1999). The necessary conditions for the identification of growth models with ordinal data and the methodological implications of the model of threshold invariance are discussed.
本文介绍了一种用于有序结果的潜在增长曲线建模的教学方法。通过一个假设示例,以图形方式说明了使用有序变量建模增长的概念方面以及阈值不变性的概念。有序增长模型根据3个嵌套模型进行描述:(a) 潜在连续变量 (yt) 的多元正态性及其与观察到的有序响应模式 (Yt) 的关系,(b) 随时间的阈值不变性,以及 (c) 通用尺度上连续潜在变量的增长模型。推导了模型限制的代数含义,并借助一个实证示例和Mx脚本(M.C.尼尔、S.M.博克、G.谢和H.H.梅斯,1999年)讨论了拟合有序增长模型的实际方面。讨论了用有序数据识别增长模型的必要条件以及阈值不变性模型的方法学含义。