Parikh Ravi B, Gdowski Andrew, Patt Debra A, Hertler Andrew, Mermel Craig, Bekelman Justin E
1 Penn Center for Cancer Care Innovation at the Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA.
2 Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA.
Am Soc Clin Oncol Educ Book. 2019 Jan;39:e53-e58. doi: 10.1200/EDBK_238891. Epub 2019 May 17.
Big data and predictive analytics have immense potential to improve risk stratification, particularly in data-rich fields like oncology. This article reviews the literature published on use cases and challenges in applying predictive analytics to improve risk stratification in oncology. We characterized evidence-based use cases of predictive analytics in oncology into three distinct fields: (1) population health management, (2) radiomics, and (3) pathology. We then highlight promising future use cases of predictive analytics in clinical decision support and genomic risk stratification. We conclude by describing challenges in the future applications of big data in oncology, namely (1) difficulties in acquisition of comprehensive data and endpoints, (2) the lack of prospective validation of predictive tools, and (3) the risk of automating bias in observational datasets. If such challenges can be overcome, computational techniques for clinical risk stratification will in short order improve clinical risk stratification for patients with cancer.
大数据和预测分析在改善风险分层方面具有巨大潜力,尤其是在肿瘤学等数据丰富的领域。本文回顾了关于应用预测分析改善肿瘤学风险分层的用例和挑战的相关文献。我们将肿瘤学中基于证据的预测分析用例分为三个不同领域:(1)人群健康管理,(2)放射组学,以及(3)病理学。然后,我们强调了预测分析在临床决策支持和基因组风险分层方面未来有前景的用例。我们通过描述大数据在肿瘤学未来应用中的挑战来得出结论,即(1)获取全面数据和终点的困难,(2)预测工具缺乏前瞻性验证,以及(3)观察数据集存在自动化偏差的风险。如果能够克服这些挑战,用于临床风险分层的计算技术将很快改善癌症患者的临床风险分层。