Suppr超能文献

基于 Copula 时变相关的功能磁共振成像的动态功能连接分析。

Dynamic functional connectivity analysis of functional MRI based on copula time-varying correlation.

机构信息

Department of Information Statistics, Kangwon National University, Chuncheon, Gangwon 24341, South Korea.

Statistics Discipline, Division of Sciences and Mathematics, University of Minnesota-Morris, Morris, MN 56267-2134, USA.

出版信息

J Neurosci Methods. 2019 Jul 15;323:32-47. doi: 10.1016/j.jneumeth.2019.05.004. Epub 2019 May 14.

Abstract

BACKGROUND

Recent studies showed that functional connectivity (FC) in the human brain is not static but can dynamically change across time within time scales of seconds to minutes.

NEW METHOD

This study introduces a new statistical method called the copula time-varying correlation for dynamic functional connectivity (dFC) analysis from functional magnetic resonance imaging (fMRI) data.

RESULTS

Compared to other state-of-the-art statistical measures of dynamic correlation such as the dynamic conditional correlation (DCC), the proposed method can be effectively applied to data having asymmetric or non-normal distributions.

COMPARISON WITH EXISTING METHODS

Numerical simulations were conducted under various kinds of time-varying correlations and distributions, and it was demonstrated that the proposed method was superior to the DCC-based method for asymmetric and non-normal distributions.

CONCLUSIONS

FMRI data of 138 human participants watching a Pixar animated movie were analyzed by the proposed method based on five a priori selected brain regions in the cortex. Based on statistical group analysis results, it was discovered that (1) the correlation between the left temporoparietal junction (LTPJ) and the primary visual cortex (V1) and the correlation between the dorsal posterior cingulate cortex (dPCC) and V1 were significantly higher for older age groups (5yo-Adult) more often than for younger age groups (3yo-4yo), and (2) the right temporoparietal junction (RTPJ), LTPJ, and dPCC were significantly correlated in all age groups at most of the scanning time periods.

摘要

背景

最近的研究表明,人类大脑的功能连接不是静态的,而是可以在秒到分钟的时间尺度内随时间动态变化。

新方法

本研究介绍了一种新的统计方法,称为 Copula 时变相关,用于从功能磁共振成像 (fMRI) 数据中分析动态功能连接 (dFC)。

结果

与动态相关的其他最先进的统计测量方法(如动态条件相关 (DCC))相比,该方法可以有效地应用于具有不对称或非正态分布的数据。

与现有方法的比较

在各种时变相关和分布下进行了数值模拟,结果表明,该方法在不对称和非正态分布方面优于基于 DCC 的方法。

结论

对 138 名人类参与者观看皮克斯动画电影的 fMRI 数据进行了分析,该方法基于皮质中五个预先选择的大脑区域。基于统计组分析结果,发现(1)左侧颞顶联合区 (LTPJ) 和初级视觉皮层 (V1) 之间的相关性以及背侧后扣带皮层 (dPCC) 和 V1 之间的相关性在老年组(5 岁-成人)中比在年轻组(3 岁-4 岁)中更经常显著更高,以及(2)在大多数扫描时间段内,右颞顶联合区 (RTPJ)、LTPJ 和 dPCC 在所有年龄组中均显著相关。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验