Suppr超能文献

使用成像不变校准技术定量超分辨率下的蛋白质拷贝数

Quantifying Protein Copy Number in Super Resolution Using an Imaging-Invariant Calibration.

机构信息

Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Institute de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.

Institute de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain; Universitat de Vic-Universitat Central de Catalunya, Barcelona, Spain.

出版信息

Biophys J. 2019 Jun 4;116(11):2195-2203. doi: 10.1016/j.bpj.2019.04.026. Epub 2019 May 3.

Abstract

The use of super-resolution microscopy in recent years has revealed that proteins often form small assemblies inside cells and are organized in nanoclusters. However, determining the copy number of proteins within these nanoclusters constitutes a major challenge because of unknown labeling stoichiometries and complex fluorophore photophysics. We previously developed a DNA-origami-based calibration approach to extract protein copy number from super-resolution images. However, the applicability of this approach is limited by the fact that the calibration is dependent on the specific labeling and imaging conditions used in each experiment. Hence, the calibration must be repeated for each experimental condition, which is a formidable task. Here, using cells stably expressing dynein intermediate chain fused to green fluorescent protein (HeLa IC74 cells) as a reference sample, we demonstrate that the DNA-origami-based calibration data we previously generated can be extended to super-resolution images taken under different experimental conditions, enabling the quantification of any green-fluorescent-protein-fused protein of interest. To do so, we first quantified the copy number of dynein motors within nanoclusters in the cytosol and along the microtubules. Interestingly, this quantification showed that dynein motors form assemblies consisting of more than one motor, especially along microtubules. This quantification enabled us to use the HeLa IC74 cells as a reference sample to calibrate and quantify protein copy number independently of labeling and imaging conditions, dramatically improving the versatility and applicability of our approach.

摘要

近年来,超分辨率显微镜的应用揭示了蛋白质通常在细胞内形成小的组装体,并组织在纳米簇中。然而,由于未知的标记化学计量和复杂的荧光体光物理,确定这些纳米簇中的蛋白质拷贝数是一个主要挑战。我们之前开发了一种基于 DNA 折纸的校准方法,从超分辨率图像中提取蛋白质拷贝数。然而,这种方法的适用性受到限制,因为校准取决于每个实验中使用的特定标记和成像条件。因此,必须针对每种实验条件重复校准,这是一项艰巨的任务。在这里,我们使用稳定表达绿色荧光蛋白融合的动力蛋白中间链的细胞(HeLa IC74 细胞)作为参考样本,证明我们之前生成的基于 DNA 折纸的校准数据可以扩展到不同实验条件下拍摄的超分辨率图像,从而能够定量任何与绿色荧光蛋白融合的感兴趣的蛋白质。为此,我们首先定量了细胞质和微管中纳米簇内的动力蛋白马达的拷贝数。有趣的是,这种定量表明动力蛋白马达形成了由多个马达组成的组装体,特别是在微管上。这种定量使我们能够将 HeLa IC74 细胞用作参考样本,独立于标记和成像条件进行校准和定量蛋白质拷贝数,极大地提高了我们方法的通用性和适用性。

相似文献

1
Quantifying Protein Copy Number in Super Resolution Using an Imaging-Invariant Calibration.
Biophys J. 2019 Jun 4;116(11):2195-2203. doi: 10.1016/j.bpj.2019.04.026. Epub 2019 May 3.
2
A DNA origami platform for quantifying protein copy number in super-resolution.
Nat Methods. 2017 Aug;14(8):789-792. doi: 10.1038/nmeth.4342. Epub 2017 Jun 26.
5
Cargo rigidity affects the sensitivity of dynein ensembles to individual motor pausing.
Cytoskeleton (Hoboken). 2016 Dec;73(12):693-702. doi: 10.1002/cm.21339. Epub 2016 Nov 8.
6
Cytoplasmic dynein is localized to kinetochores during mitosis.
Nature. 1990 May 17;345(6272):263-5. doi: 10.1038/345263a0.
7
Crystal clear insights into how the dynein motor moves.
J Cell Sci. 2013 Feb 1;126(Pt 3):705-13. doi: 10.1242/jcs.120725. Epub 2013 Mar 22.
8
How Dynein Moves Along Microtubules.
Trends Biochem Sci. 2016 Jan;41(1):94-105. doi: 10.1016/j.tibs.2015.11.004. Epub 2015 Dec 9.
10

引用本文的文献

1
Interplay between stochastic enzyme activity and microtubule stability drives detyrosination enrichment on microtubule subsets.
Curr Biol. 2023 Dec 4;33(23):5169-5184.e8. doi: 10.1016/j.cub.2023.10.068. Epub 2023 Nov 17.
2
Quantitative Single-Molecule Localization Microscopy.
Annu Rev Biophys. 2023 May 9;52:139-160. doi: 10.1146/annurev-biophys-111622-091212.
3
Myo19 tethers mitochondria to endoplasmic reticulum-associated actin to promote mitochondrial fission.
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.260612. Epub 2023 Mar 2.
4
Quantification of Dark Protein Populations in Fluorescent Proteins by Two-Color Coincidence Detection and Nanophotonic Manipulation.
J Phys Chem B. 2022 Oct 13;126(40):7906-7915. doi: 10.1021/acs.jpcb.2c04627. Epub 2022 Oct 3.
5
Through the Eyes of Creators: Observing Artificial Molecular Motors.
ACS Nanosci Au. 2022 Jun 15;2(3):140-159. doi: 10.1021/acsnanoscienceau.1c00041. Epub 2022 Jan 13.
7
Small Peptide-Protein Interaction Pair for Genetically Encoded, Fixation Compatible Peptide-PAINT.
Nano Lett. 2021 Nov 24;21(22):9509-9516. doi: 10.1021/acs.nanolett.1c02895. Epub 2021 Nov 10.
8
A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM.
Nat Methods. 2021 Jun;18(6):669-677. doi: 10.1038/s41592-021-01154-y. Epub 2021 May 31.
9
Challenges facing quantitative large-scale optical super-resolution, and some simple solutions.
iScience. 2021 Feb 3;24(3):102134. doi: 10.1016/j.isci.2021.102134. eCollection 2021 Mar 19.
10

本文引用的文献

1
Dynamic Clustering of Dyneins on Axonal Endosomes: Evidence from High-Speed Darkfield Imaging.
Biophys J. 2018 Jul 17;115(2):230-241. doi: 10.1016/j.bpj.2018.05.026. Epub 2018 Jun 19.
2
The cytoplasmic dynein transport machinery and its many cargoes.
Nat Rev Mol Cell Biol. 2018 Jun;19(6):382-398. doi: 10.1038/s41580-018-0004-3.
3
Cryo-EM shows how dynactin recruits two dyneins for faster movement.
Nature. 2018 Feb 7;554(7691):202-206. doi: 10.1038/nature25462.
4
A DNA origami platform for quantifying protein copy number in super-resolution.
Nat Methods. 2017 Aug;14(8):789-792. doi: 10.1038/nmeth.4342. Epub 2017 Jun 26.
5
Unraveling the Thousand Word Picture: An Introduction to Super-Resolution Data Analysis.
Chem Rev. 2017 Jun 14;117(11):7276-7330. doi: 10.1021/acs.chemrev.6b00729. Epub 2017 Apr 17.
6
Turning single-molecule localization microscopy into a quantitative bioanalytical tool.
Nat Protoc. 2017 Mar;12(3):453-460. doi: 10.1038/nprot.2016.166. Epub 2017 Feb 2.
7
Kinesin 1 Drives Autolysosome Tubulation.
Dev Cell. 2016 May 23;37(4):326-336. doi: 10.1016/j.devcel.2016.04.014.
8
Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes.
Cell. 2016 Feb 11;164(4):722-34. doi: 10.1016/j.cell.2015.12.054. Epub 2016 Feb 4.
9
In situ structural analysis of the human nuclear pore complex.
Nature. 2015 Oct 1;526(7571):140-143. doi: 10.1038/nature15381. Epub 2015 Sep 23.
10
A set of homo-oligomeric standards allows accurate protein counting.
Angew Chem Int Ed Engl. 2015 Oct 5;54(41):12049-52. doi: 10.1002/anie.201505664. Epub 2015 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验