Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy; Institute de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain.
Institute de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain; Universitat de Vic-Universitat Central de Catalunya, Barcelona, Spain.
Biophys J. 2019 Jun 4;116(11):2195-2203. doi: 10.1016/j.bpj.2019.04.026. Epub 2019 May 3.
The use of super-resolution microscopy in recent years has revealed that proteins often form small assemblies inside cells and are organized in nanoclusters. However, determining the copy number of proteins within these nanoclusters constitutes a major challenge because of unknown labeling stoichiometries and complex fluorophore photophysics. We previously developed a DNA-origami-based calibration approach to extract protein copy number from super-resolution images. However, the applicability of this approach is limited by the fact that the calibration is dependent on the specific labeling and imaging conditions used in each experiment. Hence, the calibration must be repeated for each experimental condition, which is a formidable task. Here, using cells stably expressing dynein intermediate chain fused to green fluorescent protein (HeLa IC74 cells) as a reference sample, we demonstrate that the DNA-origami-based calibration data we previously generated can be extended to super-resolution images taken under different experimental conditions, enabling the quantification of any green-fluorescent-protein-fused protein of interest. To do so, we first quantified the copy number of dynein motors within nanoclusters in the cytosol and along the microtubules. Interestingly, this quantification showed that dynein motors form assemblies consisting of more than one motor, especially along microtubules. This quantification enabled us to use the HeLa IC74 cells as a reference sample to calibrate and quantify protein copy number independently of labeling and imaging conditions, dramatically improving the versatility and applicability of our approach.
近年来,超分辨率显微镜的应用揭示了蛋白质通常在细胞内形成小的组装体,并组织在纳米簇中。然而,由于未知的标记化学计量和复杂的荧光体光物理,确定这些纳米簇中的蛋白质拷贝数是一个主要挑战。我们之前开发了一种基于 DNA 折纸的校准方法,从超分辨率图像中提取蛋白质拷贝数。然而,这种方法的适用性受到限制,因为校准取决于每个实验中使用的特定标记和成像条件。因此,必须针对每种实验条件重复校准,这是一项艰巨的任务。在这里,我们使用稳定表达绿色荧光蛋白融合的动力蛋白中间链的细胞(HeLa IC74 细胞)作为参考样本,证明我们之前生成的基于 DNA 折纸的校准数据可以扩展到不同实验条件下拍摄的超分辨率图像,从而能够定量任何与绿色荧光蛋白融合的感兴趣的蛋白质。为此,我们首先定量了细胞质和微管中纳米簇内的动力蛋白马达的拷贝数。有趣的是,这种定量表明动力蛋白马达形成了由多个马达组成的组装体,特别是在微管上。这种定量使我们能够将 HeLa IC74 细胞用作参考样本,独立于标记和成像条件进行校准和定量蛋白质拷贝数,极大地提高了我们方法的通用性和适用性。