Zamani Ali, Bhounsule Pranav A
Robotics and Motion Laboratory, Department of Mechanical Engineering, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
Biomimetics (Basel). 2018 Sep 6;3(3):25. doi: 10.3390/biomimetics3030025.
Inspired by biological control synergies, wherein fixed groups of muscles are activated in a coordinated fashion to perform tasks in a stable way, we present an analogous control approach for the stabilization of legged robots and apply it to a model of running. Our approach is based on the step-to-step notion of stability, also known as orbital stability, using an orbital control Lyapunov function. We map both the robot state at a suitably chosen Poincaré section (an instant in the locomotion cycle such as the mid-flight phase) and control actions (e.g., foot placement angle, thrust force, braking force) at the current step, to the robot state at the Poincaré section at the next step. This map is used to find the control action that leads to a steady state (nominal) gait. Next, we define a quadratic Lyapunov function at the Poincaré section. For a range of initial conditions, we find control actions that would minimize an energy metric while ensuring that the Lyapunov function decays exponentially fast between successive steps. For the model of running, we find that the optimization reveals three distinct control synergies depending on the initial conditions: (1) foot placement angle is used when total energy is the same as that of the steady state (nominal) gait; (2) foot placement angle and thrust force are used when total energy is less than the nominal; and (3) foot placement angle and braking force are used when total energy is more than the nominal.
受生物控制协同作用的启发,即在执行任务时,固定的肌肉群以协调的方式被激活,从而稳定地完成任务,我们提出了一种类似的控制方法来稳定有腿机器人,并将其应用于跑步模型。我们的方法基于逐步稳定性的概念,也称为轨道稳定性,使用轨道控制李雅普诺夫函数。我们将在适当选择的庞加莱截面(运动周期中的一个瞬间,如飞行中期阶段)的机器人状态以及当前步骤的控制动作(例如,脚的放置角度、推力、制动力),映射到下一步庞加莱截面处的机器人状态。该映射用于找到导致稳态(标称)步态的控制动作。接下来,我们在庞加莱截面处定义一个二次李雅普诺夫函数。对于一系列初始条件,我们找到能使能量指标最小化的控制动作,同时确保李雅普诺夫函数在连续步骤之间以指数速度衰减。对于跑步模型,我们发现根据初始条件,优化揭示了三种不同的控制协同作用:(1)当总能量与稳态(标称)步态的能量相同时,使用脚的放置角度;(2)当总能量小于标称能量时,使用脚的放置角度和推力;(3)当总能量大于标称能量时,使用脚的放置角度和制动力。