Science of Motion, Institute of Sport Science, Friedrich-Schiller University, Seidelstrasse 20, 07749 Jena, Germany.
Bioinspir Biomim. 2012 Dec;7(4):046002. doi: 10.1088/1748-3182/7/4/046002. Epub 2012 Jul 13.
Several recent studies on the control of legged locomotion in animal and robot running focus on the influence of different leg parameters on gait stability. In a preceding investigation self-stability controls showing deadbeat behavior could be obtained by studying the dynamics of the system in dependence of the leg orientation carefully adjusted during the flight phase. Such controls allow to accommodate disturbances of the ground level without having to detect them. Here we further this method in two ways. Besides the leg orientation, we allow changes in leg stiffness during flight and show that this extension substantially improves the rejection of ground disturbances. In a human like example the tolerance of random variation in ground level over many steps increased from 3.5% to 35% of leg length. In single steps changes of about 70% leg length (either up or down) could be negotiated. The variable leg stiffness not only allows to start with flat leg orientations maximizing step tolerances but also increase the control subspace. This allows to customize self-stability controls and to consider physical and technical limitations found in animals and robots.
最近有几项关于动物和机器人跑步中腿部运动控制的研究,侧重于研究不同腿部参数对步态稳定性的影响。在之前的一项研究中,通过仔细研究飞行阶段中腿部姿态的动力学,可以获得具有无超调行为的自稳定控制。这样的控制允许在不检测地面干扰的情况下适应地面干扰。在这里,我们通过两种方式进一步扩展了这种方法。除了腿部姿态外,我们还允许在飞行过程中改变腿部的刚度,并且表明这种扩展大大提高了对地面干扰的抑制能力。在一个类似人类的例子中,地面水平随机变化的容忍度从腿部长度的 3.5%增加到 35%。在单步中,可以协商大约 70%腿部长度(向上或向下)的变化。可变的腿部刚度不仅允许从腿部姿态最大化的腿部长度开始,从而最大化步长的容忍度,还可以增加控制子空间。这使得可以定制自稳定控制,并考虑到动物和机器人中存在的物理和技术限制。