Suppr超能文献

用于经颅磁刺激中准静态电场测量的电小偶极子天线探头

Electrically Small Dipole Antenna Probe for Quasistatic Electric Field Measurements in Transcranial Magnetic Stimulation.

作者信息

Zolj Adnan, Makarov Sergey N, de Lara Lucia Navarro, Nummenmaa Aapo

机构信息

Department of Electrical and Computer Engineering., Worcester Polytechnic Institute, Worcester, MA 01609, USA.

Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.

出版信息

IEEE Trans Magn. 2019 Jan;55(1). doi: 10.1109/TMAG.2018.2875882. Epub 2018 Nov 2.

Abstract

The present paper designs, constructs, and tests an electrically small dipole antenna probe for the measurement of electric field distributions with the ultimate purpose to directly measure electric fields induced by a transcranial magnetic stimulation (TMS) coil. Its unique features include applicability to measurements in both air and conducting medium, high spatial resolution, large frequency band from 100 Hz to 300 KHz, efficient feedline isolation via a printed Dyson balun, and accurate mitigation of noise. Prior work in this area is thoroughly reviewed. The proposed probe design is realized in hardware; implementation details and design tradeoffs are described. Test data are presented for the measurement of a constant wave capacitor electric field, demonstrating the probe's ability to properly measure electric fields caused by a charge distribution. Test data are also presented for the measurement of a constant wave solenoidal electric field, demonstrating the probe's ability to measure electric fields caused by Faraday's law of induction. Those are the primary fields for the transcranial magnetic stimulation. Further steps necessary for the application of this probe as an instrument for TMS coil design are discussed.

摘要

本文设计、构建并测试了一种用于测量电场分布的电小偶极天线探头,其最终目的是直接测量经颅磁刺激(TMS)线圈感应的电场。其独特特性包括适用于在空气和导电介质中进行测量、高空间分辨率、100 Hz至300 KHz的大频率范围、通过印刷戴森巴伦实现高效馈线隔离以及精确降噪。对该领域的先前工作进行了全面回顾。所提出的探头设计通过硬件实现;描述了实现细节和设计权衡。给出了用于测量恒定波电容器电场的测试数据,展示了该探头正确测量由电荷分布引起的电场的能力。还给出了用于测量恒定波螺线管电场的测试数据,展示了该探头测量由法拉第感应定律引起的电场的能力。这些是经颅磁刺激的主要场。讨论了将该探头用作TMS线圈设计仪器所需的进一步步骤。

相似文献

1
Electrically Small Dipole Antenna Probe for Quasistatic Electric Field Measurements in Transcranial Magnetic Stimulation.
IEEE Trans Magn. 2019 Jan;55(1). doi: 10.1109/TMAG.2018.2875882. Epub 2018 Nov 2.
2
Comparison of Coil Designs for Transcranial Magnetic Stimulation of a Pig Model.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:1535-1538. doi: 10.1109/EMBC46164.2021.9629707.
3
Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.
Phys Med Biol. 2017 Mar 21;62(6):2224-2238. doi: 10.1088/1361-6560/aa5b70. Epub 2017 Feb 21.
4
Experimental Characterization of the Electric Field Distribution Induced by TMS Devices.
Brain Stimul. 2015 May-Jun;8(3):582-9. doi: 10.1016/j.brs.2015.01.004. Epub 2015 Jan 12.
6
Minimum-energy coils for transcranial magnetic stimulation: application to focal stimulation.
Brain Stimul. 2015 Jan-Feb;8(1):124-34. doi: 10.1016/j.brs.2014.10.002. Epub 2014 Oct 13.
7
The effect of head and coil modeling for the calculation of induced electric field during transcranial magnetic stimulation.
Int J Psychophysiol. 2014 Jul;93(1):167-71. doi: 10.1016/j.ijpsycho.2013.07.004. Epub 2013 Jul 18.
8
The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.
Neuroimage Clin. 2017 Apr 18;15:106-117. doi: 10.1016/j.nicl.2017.04.014. eCollection 2017.
10
Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation.
J Neural Eng. 2018 Jun;15(3):036022. doi: 10.1088/1741-2552/aaa505. Epub 2018 Jan 4.

引用本文的文献

1
Surface-Integrated Electric Field Sensor for the Detection of High-Voltage Power Lines.
Sensors (Basel). 2021 Dec 13;21(24):8327. doi: 10.3390/s21248327.

本文引用的文献

1
Experimental Characterization of the Electric Field Distribution Induced by TMS Devices.
Brain Stimul. 2015 May-Jun;8(3):582-9. doi: 10.1016/j.brs.2015.01.004. Epub 2015 Jan 12.
2
3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method.
Phys Med Biol. 2009 Jun 21;54(12):3631-47. doi: 10.1088/0031-9155/54/12/002. Epub 2009 May 21.
3
Measurement of electric fields due to time-varying magnetic field gradients using dipole probes.
Phys Med Biol. 2007 Sep 7;52(17):5119-30. doi: 10.1088/0031-9155/52/17/001. Epub 2007 Aug 7.
4
Transcranial magnetic stimulation: a primer.
Neuron. 2007 Jul 19;55(2):187-99. doi: 10.1016/j.neuron.2007.06.026.
5
Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils.
Phys Med Biol. 2007 May 21;52(10):2879-92. doi: 10.1088/0031-9155/52/10/016. Epub 2007 May 1.
6
Electrode polarization impedance in weak NaCl aqueous solutions.
IEEE Trans Biomed Eng. 2005 Dec;52(12):2093-9. doi: 10.1109/TBME.2005.857639.
7
Intracranial measurement of current densities induced by transcranial magnetic stimulation in the human brain.
Neurosci Lett. 2004 Jan 9;354(2):91-4. doi: 10.1016/s0304-3940(03)00861-9.
9
Non-invasive magnetic stimulation of human motor cortex.
Lancet. 1985 May 11;1(8437):1106-7. doi: 10.1016/s0140-6736(85)92413-4.
10
Localizing the site of magnetic brain stimulation in humans.
Neurology. 1990 Apr;40(4):666-70. doi: 10.1212/wnl.40.4.666.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验