Suppr超能文献

使用边界元法对经颅磁刺激诱发的总电场进行三维建模。

3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method.

作者信息

Salinas F S, Lancaster J L, Fox P T

机构信息

Research Imaging Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

出版信息

Phys Med Biol. 2009 Jun 21;54(12):3631-47. doi: 10.1088/0031-9155/54/12/002. Epub 2009 May 21.

Abstract

Transcranial magnetic stimulation (TMS) delivers highly localized brain stimulations via non-invasive externally applied magnetic fields. This non-invasive, painless technique provides researchers and clinicians with a unique tool capable of stimulating both the central and peripheral nervous systems. However, a complete analysis of the macroscopic electric fields produced by TMS has not yet been performed. In this paper, we addressed the importance of the secondary E-field created by surface charge accumulation during TMS using the boundary element method (BEM). 3D models were developed using simple head geometries in order to test the model and compare it with measured values. The effects of tissue geometry, size and conductivity were also investigated. Finally, a realistically shaped head model was used to assess the effect of multiple surfaces on the total E-field. Secondary E-fields have the greatest impact at areas in close proximity to each tissue layer. Throughout the head, the secondary E-field magnitudes typically range from 20% to 35% of the primary E-field's magnitude. The direction of the secondary E-field was generally in opposition to the primary E-field; however, for some locations, this was not the case (i.e. going from high to low conductivity tissues). These findings show that realistically shaped head geometries are important for accurate modeling of the total E-field.

摘要

经颅磁刺激(TMS)通过外部施加的非侵入性磁场实现高度局部化的脑刺激。这种非侵入性、无痛技术为研究人员和临床医生提供了一种独特工具,能够刺激中枢和周围神经系统。然而,尚未对TMS产生的宏观电场进行完整分析。在本文中,我们使用边界元法(BEM)探讨了TMS期间表面电荷积累产生的二次电场的重要性。使用简单的头部几何形状开发了三维模型,以测试模型并将其与测量值进行比较。还研究了组织几何形状、大小和电导率的影响。最后,使用逼真形状的头部模型评估多个表面对总电场的影响。二次电场在每个组织层附近的区域影响最大。在整个头部,二次电场强度通常为一次电场强度的20%至35%。二次电场的方向通常与一次电场相反;然而,在某些位置并非如此(即从高电导率组织到低电导率组织)。这些发现表明,逼真形状的头部几何形状对于准确模拟总电场很重要。

相似文献

1
3D modeling of the total electric field induced by transcranial magnetic stimulation using the boundary element method.
Phys Med Biol. 2009 Jun 21;54(12):3631-47. doi: 10.1088/0031-9155/54/12/002. Epub 2009 May 21.
2
Individual head models for estimating the TMS-induced electric field in rat brain.
Sci Rep. 2020 Oct 15;10(1):17397. doi: 10.1038/s41598-020-74431-z.
3
Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation.
Clin Neurophysiol. 2013 Oct;124(10):1995-2007. doi: 10.1016/j.clinph.2013.04.019. Epub 2013 Jul 25.
4
TMS modeling toolbox for realistic simulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3113-6. doi: 10.1109/IEMBS.2010.5626096.
5
The effect of head and coil modeling for the calculation of induced electric field during transcranial magnetic stimulation.
Int J Psychophysiol. 2014 Jul;93(1):167-71. doi: 10.1016/j.ijpsycho.2013.07.004. Epub 2013 Jul 18.
6
Effect of the different winding methods of coil on electromagnetic field during transcranial magnetic stimulation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4270-3. doi: 10.1109/IEMBS.2008.4650153.
7
Three-dimensional head model simulation of transcranial magnetic stimulation.
IEEE Trans Biomed Eng. 2004 Sep;51(9):1586-98. doi: 10.1109/TBME.2004.827925.
8
Transcranial direct current stimulation: a computer-based human model study.
Neuroimage. 2007 Apr 15;35(3):1113-24. doi: 10.1016/j.neuroimage.2007.01.027. Epub 2007 Feb 4.
9
A principled approach to conductivity uncertainty analysis in electric field calculations.
Neuroimage. 2019 Mar;188:821-834. doi: 10.1016/j.neuroimage.2018.12.053. Epub 2018 Dec 27.
10
Computational and experimental analysis of TMS-induced electric field vectors critical to neuronal activation.
J Neural Eng. 2015 Aug;12(4):046014. doi: 10.1088/1741-2560/12/4/046014. Epub 2015 Jun 8.

引用本文的文献

2
Quasistatic approximation in neuromodulation.
J Neural Eng. 2024 Jul 24;21(4). doi: 10.1088/1741-2552/ad625e.
3
[The influence of tissue conductivity on the calculation of electric field in the transcranial magnetic stimulation head model].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Jun 25;40(3):401-408. doi: 10.7507/1001-5515.202211070.
5
Transcranial magnetic stimulation of the brain: What is stimulated? - A consensus and critical position paper.
Clin Neurophysiol. 2022 Aug;140:59-97. doi: 10.1016/j.clinph.2022.04.022. Epub 2022 May 18.
6
Angle-tuned coils: attractive building blocks for TMS with improved depth-spread performance.
J Neural Eng. 2022 May 4;19(2). doi: 10.1088/1741-2552/ac697c.
7
Magnetically Induced Temporal Interference for Focal and Deep-Brain Stimulation.
Front Hum Neurosci. 2021 Sep 27;15:693207. doi: 10.3389/fnhum.2021.693207. eCollection 2021.
8
Multi-scale modeling toolbox for single neuron and subcellular activity under Transcranial Magnetic Stimulation.
Brain Stimul. 2021 Nov-Dec;14(6):1470-1482. doi: 10.1016/j.brs.2021.09.004. Epub 2021 Sep 22.
9
Rapid whole-brain electric field mapping in transcranial magnetic stimulation using deep learning.
PLoS One. 2021 Jul 30;16(7):e0254588. doi: 10.1371/journal.pone.0254588. eCollection 2021.
10
Electric field calculation and peripheral nerve stimulation prediction for head and body gradient coils.
Magn Reson Med. 2021 Oct;86(4):2301-2315. doi: 10.1002/mrm.28853. Epub 2021 Jun 3.

本文引用的文献

1
On bioelectric potentials in an inhomogeneous volume conductor.
Biophys J. 1967 Jan;7(1):1-11. doi: 10.1016/S0006-3495(67)86571-8. Epub 2008 Dec 31.
2
Transcranial magnetic stimulation in heterogeneous brain tissue: clinical impact on focality, reproducibility and true sham stimulation.
J Psychiatr Res. 2009 Jan;43(3):255-64. doi: 10.1016/j.jpsychires.2008.04.008. Epub 2008 Jun 2.
3
A reconstruction of the conductive phenomena elicited by transcranial magnetic stimulation in heterogeneous brain tissue.
Phys Med. 2008 Jun;24(2):80-6. doi: 10.1016/j.ejmp.2008.01.005. Epub 2008 Feb 25.
4
A Matlab library for solving quasi-static volume conduction problems using the boundary element method.
Comput Methods Programs Biomed. 2007 Dec;88(3):256-63. doi: 10.1016/j.cmpb.2007.09.004.
5
Measurement of electric fields due to time-varying magnetic field gradients using dipole probes.
Phys Med Biol. 2007 Sep 7;52(17):5119-30. doi: 10.1088/0031-9155/52/17/001. Epub 2007 Aug 7.
6
Diffusion tensor MRI-based estimation of the influence of brain tissue anisotropy on the effects of transcranial magnetic stimulation.
Neuroimage. 2007 Jul 15;36(4):1159-70. doi: 10.1016/j.neuroimage.2007.03.062. Epub 2007 May 23.
7
Detailed 3D models of the induced electric field of transcranial magnetic stimulation coils.
Phys Med Biol. 2007 May 21;52(10):2879-92. doi: 10.1088/0031-9155/52/10/016. Epub 2007 May 1.
9
Transcranial magnetic stimulation and stroke: a computer-based human model study.
Neuroimage. 2006 Apr 15;30(3):857-70. doi: 10.1016/j.neuroimage.2005.04.046. Epub 2006 Feb 13.
10
Advances in functional and structural MR image analysis and implementation as FSL.
Neuroimage. 2004;23 Suppl 1:S208-19. doi: 10.1016/j.neuroimage.2004.07.051.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验