Suppr超能文献

用于CT材料分解的空间光谱滤波器的物理建模与性能

Physical Modeling and Performance of Spatial-Spectral Filters for CT Material Decomposition.

作者信息

Tivnan Matthew, Tilley Ii Steven, Stayman J Webster

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA 21205.

出版信息

Proc SPIE Int Soc Opt Eng. 2019 Feb;10948. doi: 10.1117/12.2513481. Epub 2019 Mar 1.

Abstract

Material decomposition for imaging multiple contrast agents in a single acquisition has been made possible by spectral CT: a modality which incorporates multiple photon energy spectral sensitivities into a single data collection. This work presents an investigation of a new approach to spectral CT which does not rely on energy-discriminating detectors or multiple x-ray sources. Instead, a tiled pattern of K-edge filters are placed in front of the x-ray to create spatially encoded spectra data. For improved sampling, the spatial-spectral filter is moved continuously with respect to the source. A model-based material decomposition algorithm is adopted to directly reconstruct multiple material densities from projection data that is sparse in each spectral channel. Physical effects associated with the x-ray focal spot size and motion blur for the moving filter are expected to impact overall performance. In this work, those physical effects are modeled and a performance analysis is conducted. Specifically, experiments are presented with simulated focal spot widths between 0.2 mm and 4.0 mm. Additionally, filter motion blur is simulated for a linear translation speeds between 50 mm/s and 450 mm/s. The performance differential between a 0.2 mm and a 1.0 mm focal spot is less than 15% suggesting feasibility of the approach with realistic x-ray tubes. Moreover, for reasonable filter actuation speeds, higher speeds are shown to decrease error (due to improved sampling) despite motion-based spectral blur.

摘要

光谱CT使得在一次采集过程中对多种造影剂进行成像的材料分解成为可能:这种模式将多种光子能量光谱灵敏度整合到一次数据采集中。这项工作展示了对一种新型光谱CT方法的研究,该方法不依赖能量分辨探测器或多个X射线源。相反,在X射线前放置K边滤波器的平铺图案,以创建空间编码的光谱数据。为了改善采样,空间光谱滤波器相对于源连续移动。采用基于模型的材料分解算法,直接从每个光谱通道中稀疏的投影数据重建多种材料密度。与X射线焦点尺寸和移动滤波器的运动模糊相关的物理效应预计会影响整体性能。在这项工作中,对这些物理效应进行了建模并进行了性能分析。具体而言,给出了模拟焦点宽度在0.2毫米至4.0毫米之间的实验。此外,针对50毫米/秒至450毫米/秒之间的线性平移速度模拟了滤波器运动模糊。0.2毫米和1.0毫米焦点之间的性能差异小于15%,这表明该方法在实际X射线管中的可行性。此外,对于合理的滤波器驱动速度,尽管存在基于运动的光谱模糊,但较高的速度显示出可降低误差(由于采样改善)。

相似文献

1
Physical Modeling and Performance of Spatial-Spectral Filters for CT Material Decomposition.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10948. doi: 10.1117/12.2513481. Epub 2019 Mar 1.
2
A prototype spatial-spectral CT system for material decomposition with energy-integrating detectors.
Med Phys. 2021 Oct;48(10):6401-6411. doi: 10.1002/mp.14930. Epub 2021 Jun 6.
3
Design Optimization of Spatial-Spectral Filters for Cone-Beam CT Material Decomposition.
IEEE Trans Med Imaging. 2022 Sep;41(9):2399-2413. doi: 10.1109/TMI.2022.3164568. Epub 2022 Aug 31.
4
Multi-Contrast CT Imaging with a Prototype Spatial-Spectral Filter.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2020 Aug;2020:638-641.
5
Model-based Multi-material Decomposition using Spatial-Spectral CT Filters.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2018 May;2018:102-105.
6
Optimized Spatial-Spectral CT for Multi-Material Decomposition.
Proc SPIE Int Soc Opt Eng. 2019 Jun;11072. doi: 10.1117/12.2534333. Epub 2019 May 28.
8
Photon counting spectral CT: improved material decomposition with K-edge-filtered x-rays.
Phys Med Biol. 2012 Mar 21;57(6):1595-615. doi: 10.1088/0031-9155/57/6/1595. Epub 2012 Mar 7.
9
A neural network-based method for spectral distortion correction in photon counting x-ray CT.
Phys Med Biol. 2016 Aug 21;61(16):6132-53. doi: 10.1088/0031-9155/61/16/6132. Epub 2016 Jul 29.
10
Photon-counting CT via interleaved/gapped spectral channels: Feasibility and imaging performance.
Med Phys. 2022 Mar;49(3):1445-1457. doi: 10.1002/mp.15416. Epub 2022 Feb 8.

引用本文的文献

1
Design Optimization of Spatial-Spectral Filters for Cone-Beam CT Material Decomposition.
IEEE Trans Med Imaging. 2022 Sep;41(9):2399-2413. doi: 10.1109/TMI.2022.3164568. Epub 2022 Aug 31.
2
High-resolution model-based material decomposition in dual-layer flat-panel CBCT.
Med Phys. 2021 Oct;48(10):6375-6387. doi: 10.1002/mp.14894. Epub 2021 Jul 17.
3
Spectral CT using a fine grid structure and varying x-ray incidence angle.
Med Phys. 2021 Oct;48(10):6412-6420. doi: 10.1002/mp.14853. Epub 2021 Jun 21.
4
Energy-integrating-detector multi-energy CT: Implementation and a phantom study.
Med Phys. 2021 Sep;48(9):4857-4871. doi: 10.1002/mp.14943. Epub 2021 Jul 29.
5
Combining Spectral CT Acquisition Methods for High-Sensitivity Material Decomposition.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11312. doi: 10.1117/12.2550025. Epub 2020 Mar 16.

本文引用的文献

1
Model-based Multi-material Decomposition using Spatial-Spectral CT Filters.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2018 May;2018:102-105.
3
Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study.
Med Phys. 2017 Oct;44(10):5120-5127. doi: 10.1002/mp.12301. Epub 2017 Aug 20.
4
Spectral Photon-counting CT: Initial Experience with Dual-Contrast Agent K-Edge Colonography.
Radiology. 2017 Jun;283(3):723-728. doi: 10.1148/radiol.2016160890. Epub 2016 Dec 2.
5
Spectral CT imaging of vulnerable plaque with two independent biomarkers.
Phys Med Biol. 2012 Jul 7;57(13):4117-38. doi: 10.1088/0031-9155/57/13/4117. Epub 2012 Jun 8.
6
Atherosclerotic plaque composition: analysis with multicolor CT and targeted gold nanoparticles.
Radiology. 2010 Sep;256(3):774-82. doi: 10.1148/radiol.10092473. Epub 2010 Jul 28.
7
Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography.
Phys Med Biol. 2008 Aug 7;53(15):4031-47. doi: 10.1088/0031-9155/53/15/002. Epub 2008 Jul 8.
8
First performance evaluation of a dual-source CT (DSCT) system.
Eur Radiol. 2006 Feb;16(2):256-68. doi: 10.1007/s00330-005-2919-2. Epub 2005 Dec 10.
9
Split-filter computed tomography: a simple technique for dual energy scanning.
J Comput Assist Tomogr. 1980 Aug;4(4):501-9. doi: 10.1097/00004728-198008000-00019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验