Suppr超能文献

用于多物质分解的优化空间光谱CT

Optimized Spatial-Spectral CT for Multi-Material Decomposition.

作者信息

Tivnan Matthew, Wang Wenying, Tilley Steven, Siewerdsen Jeffrey H, Stayman J Webster

机构信息

Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave., Baltimore MD 21205.

出版信息

Proc SPIE Int Soc Opt Eng. 2019 Jun;11072. doi: 10.1117/12.2534333. Epub 2019 May 28.

Abstract

Spectral CT is an emerging modality that uses a data acquisition scheme with varied spectral responses to provide enhanced material discrimination in addition to the structural information of conventional CT. Existing clinical and preclinical designs with this capability include kV-switching, split-filtration, and dual-layer detector systems to provide two spectral channels of projection data. In this work, we examine an alternate design based on a spatial-spectral filter. This source-side filter is made up a linear array of materials that divide the incident x-ray beam into spectrally varied beamlets. This design allows for any number of spectral channels; however, each individual channel is sparse in the projection domain. Model-based iterative reconstruction methods can accommodate such sparse spatial-spectral sampling patterns and allow for the incorporation of advanced regularization. With the goal of an optimized physical design, we characterize the effects of design parameters including filter tile order and filter tile width and their impact on material decomposition performance. We present results of numerical simulations that characterize the impact of each design parameter using a realistic CT geometry and noise model to demonstrate feasibility. Results for filter tile order show little change indicating that filter order is a low-priority design consideration. We observe improved performance for narrower filter widths; however, the performance drop-off is relatively flat indicating that wider filter widths are also feasible designs.

摘要

光谱CT是一种新兴的成像方式,它采用具有不同光谱响应的数据采集方案,除了提供传统CT的结构信息外,还能增强物质辨别能力。现有的具备这种能力的临床和临床前设计包括千伏切换、分离滤波和双层探测器系统,以提供两个投影数据的光谱通道。在这项工作中,我们研究了一种基于空间光谱滤波器的替代设计。这种源侧滤波器由一排线性排列的材料组成,这些材料将入射的X射线束分成光谱不同的子束。这种设计允许有任意数量的光谱通道;然而,每个单独的通道在投影域中是稀疏的。基于模型的迭代重建方法可以适应这种稀疏的空间光谱采样模式,并允许纳入先进的正则化。以优化物理设计为目标,我们表征了包括滤波器瓦片顺序和滤波器瓦片宽度在内的设计参数的影响及其对物质分解性能的影响。我们展示了数值模拟的结果,这些结果使用实际的CT几何形状和噪声模型表征了每个设计参数的影响,以证明其可行性。滤波器瓦片顺序的结果显示变化不大,表明滤波器顺序是一个低优先级的设计考虑因素。我们观察到较窄的滤波器宽度性能有所改善;然而,性能下降相对平缓,表明较宽的滤波器宽度也是可行的设计。

相似文献

1
Optimized Spatial-Spectral CT for Multi-Material Decomposition.
Proc SPIE Int Soc Opt Eng. 2019 Jun;11072. doi: 10.1117/12.2534333. Epub 2019 May 28.
2
A prototype spatial-spectral CT system for material decomposition with energy-integrating detectors.
Med Phys. 2021 Oct;48(10):6401-6411. doi: 10.1002/mp.14930. Epub 2021 Jun 6.
3
Multi-Contrast CT Imaging with a Prototype Spatial-Spectral Filter.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2020 Aug;2020:638-641.
4
Fast kV-switching and dual-layer flat-panel detector enabled cone-beam CT joint spectral imaging.
Phys Med Biol. 2024 May 14;69(11). doi: 10.1088/1361-6560/ad40f3.
5
High-resolution model-based material decomposition in dual-layer flat-panel CBCT.
Med Phys. 2021 Oct;48(10):6375-6387. doi: 10.1002/mp.14894. Epub 2021 Jul 17.
6
Design Optimization of Spatial-Spectral Filters for Cone-Beam CT Material Decomposition.
IEEE Trans Med Imaging. 2022 Sep;41(9):2399-2413. doi: 10.1109/TMI.2022.3164568. Epub 2022 Aug 31.
7
Physical Modeling and Performance of Spatial-Spectral Filters for CT Material Decomposition.
Proc SPIE Int Soc Opt Eng. 2019 Feb;10948. doi: 10.1117/12.2513481. Epub 2019 Mar 1.
8
Spectral optimization using fast kV switching and filtration for photon counting CT with realistic detector responses: a simulation study.
J Med Imaging (Bellingham). 2024 Dec;11(Suppl 1):S12805. doi: 10.1117/1.JMI.11.S1.S12805. Epub 2024 Jul 25.
9
10
Regularization of nonlinear decomposition of spectral x-ray projection images.
Med Phys. 2017 Sep;44(9):e174-e187. doi: 10.1002/mp.12283.

引用本文的文献

1
Design Optimization of Spatial-Spectral Filters for Cone-Beam CT Material Decomposition.
IEEE Trans Med Imaging. 2022 Sep;41(9):2399-2413. doi: 10.1109/TMI.2022.3164568. Epub 2022 Aug 31.
2
Combining Spectral CT Acquisition Methods for High-Sensitivity Material Decomposition.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11312. doi: 10.1117/12.2550025. Epub 2020 Mar 16.
3
Multi-Contrast CT Imaging with a Prototype Spatial-Spectral Filter.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2020 Aug;2020:638-641.
4
Grating-based Spectral CT using Small Angle X-ray Beam Deflections.
Conf Proc Int Conf Image Form Xray Comput Tomogr. 2020 Aug;2020:630-633.
5
Radiation dose efficiency of multi-energy photon-counting-detector CT for dual-contrast imaging.
Phys Med Biol. 2019 Dec 13;64(24):245003. doi: 10.1088/1361-6560/ab55bf.

本文引用的文献

1
Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study.
Med Phys. 2017 Oct;44(10):5120-5127. doi: 10.1002/mp.12301. Epub 2017 Aug 20.
2
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications.
Radiology. 2015 Sep;276(3):637-53. doi: 10.1148/radiol.2015142631.
3
Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT.
Phys Med Biol. 2010 Nov 21;55(22):6575-99. doi: 10.1088/0031-9155/55/22/001. Epub 2010 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验