Hou Le, Samaras Dimitris, Kurc Tahsin M, Gao Yi, Saltz Joel H
Stony Brook University.
Oak Ridge National Laboratory.
Proc Mach Learn Res. 2017 Apr;54:430-439.
Within Neural Networks (NN), the parameters of Adaptive Activation Functions (AAF) control the shapes of activation functions. These parameters are trained along with other parameters in the NN. AAFs have improved performance of Convolutional Neural Networks (CNN) in multiple classification tasks. In this paper, we propose and apply AAFs on CNNs for regression tasks. We argue that applying AAFs in the regression (second-to-last) layer of a NN can significantly decrease the bias of the regression NN. However, using existing AAFs may lead to overfitting. To address this problem, we propose a Smooth Adaptive Activation Function (SAAF) with a piecewise polynomial form which can approximate any continuous function to arbitrary degree of error, while having a bounded Lipschitz constant for given bounded model parameters. As a result, NNs with SAAF can avoid overfitting by simply regularizing model parameters. We empirically evaluated CNNs with SAAFs and achieved state-of-the-art results on age and pose estimation datasets.
在神经网络(NN)中,自适应激活函数(AAF)的参数控制着激活函数的形状。这些参数与神经网络中的其他参数一起进行训练。AAF在多个分类任务中提高了卷积神经网络(CNN)的性能。在本文中,我们提出并将AAF应用于用于回归任务的CNN。我们认为,在神经网络的回归(倒数第二层)层中应用AAF可以显著降低回归神经网络的偏差。然而,使用现有的AAF可能会导致过拟合。为了解决这个问题,我们提出了一种具有分段多项式形式的平滑自适应激活函数(SAAF),它可以以任意误差程度逼近任何连续函数,同时对于给定的有界模型参数具有有界的利普希茨常数。因此,具有SAAF的神经网络可以通过简单地正则化模型参数来避免过拟合。我们通过实验评估了具有SAAF的CNN,并在年龄和姿态估计数据集上取得了领先的结果。