Selmic R R, Lewis F L
Signalogic Inc., Dallas, TX.
IEEE Trans Neural Netw. 2002;13(3):745-51. doi: 10.1109/TNN.2002.1000141.
One of the most important properties of neural nets (NNs) for control purposes is the universal approximation property. Unfortunately,, this property is generally proven for continuous functions. In most real industrial control systems there are nonsmooth functions (e.g., piecewise continuous) for which approximation results in the literature are sparse. Examples include friction, deadzone, backlash, and so on. It is found that attempts to approximate piecewise continuous functions using smooth activation functions require many NN nodes and many training iterations, and still do not yield very good results. Therefore, a novel neural-network structure is given for approximation of piecewise continuous functions of the sort that appear in friction, deadzone, backlash, and other motion control actuator nonlinearities. The novel NN consists of neurons having standard sigmoid activation functions, plus some additional neurons having a special class of nonsmooth activation functions termed "jump approximation basis function." Two types of nonsmooth jump approximation basis functions are determined- a polynomial-like basis and a sigmoid-like basis. This modified NN with additional neurons having "jump approximation" activation functions can approximate any piecewise continuous function with discontinuities at a finite number of known points. Applications of the new NN structure are made to rigid-link robotic systems with friction nonlinearities. Friction is a nonlinear effect that can limit the performance of industrial control systems; it occurs in all mechanical systems and therefore is unavoidable in control systems. It can cause tracking errors, limit cycles, and other undesirable effects. Often, inexact friction compensation is used with standard adaptive techniques that require models that are linear in the unknown parameters. It is shown here how a certain class of augmented NN, capable of approximating piecewise continuous functions, can be used for friction compensation.
神经网络(NNs)用于控制目的的最重要特性之一是通用逼近特性。不幸的是,这一特性通常是针对连续函数证明的。在大多数实际工业控制系统中,存在非光滑函数(例如,分段连续函数),而文献中针对此类函数的逼近结果很少。示例包括摩擦、死区、齿隙等等。研究发现,使用光滑激活函数逼近分段连续函数的尝试需要许多神经网络节点和许多训练迭代,而且仍然无法得到很好的结果。因此,针对摩擦、死区、齿隙以及其他运动控制执行器非线性中出现的那种分段连续函数的逼近,给出了一种新颖的神经网络结构。这种新颖的神经网络由具有标准Sigmoid激活函数的神经元组成,再加上一些具有一类特殊非光滑激活函数(称为“跳跃逼近基函数”)的额外神经元。确定了两种类型的非光滑跳跃逼近基函数——一种类似多项式的基函数和一种类似Sigmoid的基函数。这种带有具有“跳跃逼近”激活函数的额外神经元的改进神经网络可以逼近在有限数量已知点处具有间断的任何分段连续函数。将这种新的神经网络结构应用于具有摩擦非线性的刚性连杆机器人系统。摩擦是一种非线性效应,会限制工业控制系统的性能;它存在于所有机械系统中,因此在控制系统中不可避免。它会导致跟踪误差、极限环和其他不良影响。通常,不精确的摩擦补偿与标准自适应技术一起使用,这些技术需要在未知参数方面呈线性的模型。这里展示了一类能够逼近分段连续函数的增强神经网络如何用于摩擦补偿。