Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
Environ Microbiol. 2019 Aug;21(8):2948-2963. doi: 10.1111/1462-2920.14687. Epub 2019 Jun 18.
Currently defined ecotypes in marine cyanobacteria Prochlorococcus and Synechococcus likely contain subpopulations that themselves are ecologically distinct. We developed and applied high-throughput sequencing for the 16S-23S rRNA internally transcribed spacer (ITS) to examine ecotype and fine-scale genotypic community dynamics for monthly surface water samples spanning 5 years at the San Pedro Ocean Time-series site. Ecotype-level structure displayed regular seasonal patterns including succession, consistent with strong forcing by seasonally varying abiotic parameters (e.g. temperature, nutrients, light). We identified tens to thousands of amplicon sequence variants (ASVs) within ecotypes, many of which exhibited distinct patterns over time, suggesting ecologically distinct populations within ecotypes. Community structure within some ecotypes exhibited regular, seasonal patterns, but not for others, indicating other more irregular processes such as phage interactions are important. Network analysis including T4-like phage genotypic data revealed distinct viral variants correlated with different groups of cyanobacterial ASVs including time-lagged predator-prey relationships. Variation partitioning analysis indicated that phage community structure more strongly explains cyanobacterial community structure at the ASV level than the abiotic environmental factors. These results support a hierarchical model whereby abiotic environmental factors more strongly shape niche partitioning at the broader ecotype level while phage interactions are more important in shaping community structure of fine-scale variants within ecotypes.
目前在海洋蓝藻原绿球藻和聚球藻中定义的生态型可能包含本身在生态上有区别的亚群。我们开发并应用了高通量测序技术,对 16S-23S rRNA 内转录间隔区(ITS)进行了检测,以研究圣佩德罗海洋时间序列站点长达 5 年的每月地表水样本的生态型和细尺度基因型群落动态。生态型水平的结构呈现出有规律的季节性模式,包括演替,这与季节变化的非生物参数(如温度、营养物质、光照)的强烈影响一致。我们在生态型内鉴定出了数十到数千个扩增子序列变体(ASV),其中许多在时间上表现出独特的模式,表明生态型内存在生态上有区别的种群。一些生态型内的群落结构呈现出有规律的季节性模式,但其他生态型则没有,这表明其他更不规则的过程,如噬菌体相互作用,也很重要。包括 T4 样噬菌体基因型数据在内的网络分析揭示了与不同组的蓝藻 ASV 相关的独特病毒变体,包括时间滞后的捕食者-猎物关系。变异划分分析表明,噬菌体群落结构在 ASV 水平上比非生物环境因素更能解释蓝藻群落结构。这些结果支持一个层次模型,即非生物环境因素更强烈地塑造了更广泛的生态型水平上的生态位分割,而噬菌体相互作用在塑造生态型内细尺度变体的群落结构方面更为重要。