Suppr超能文献

宏基因组时间序列揭示了一个以具有强烈季节性信号的成员为主导的西英吉利海峡病毒群落。

Metagenomic time series reveals a Western English Channel viral community dominated by members with strong seasonal signals.

机构信息

School of Biosciences, University of Exeter, Exeter, United Kingdom.

出版信息

ISME J. 2024 Jan 8;18(1). doi: 10.1093/ismejo/wrae216.

Abstract

Marine viruses are key players of ocean biogeochemistry, profoundly influencing microbial community ecology and evolution. Despite their importance, few studies have explored continuous inter-seasonal viral metagenomic time series in marine environments. Viral dynamics are complex, influenced by multiple factors such as host population dynamics and environmental conditions. To disentangle the complexity of viral communities, we developed an unsupervised machine learning framework to classify viral contigs into "chronotypes" based on temporal abundance patterns. Analysing an inter-seasonal monthly time series of surface viral metagenomes from the Western English Channel, we identified chronotypes and compared their functional and evolutionary profiles. Results revealed a consistent annual cycle with steep compositional changes from winter to summer and steadier transitions from summer to winter. Seasonal chronotypes were enriched in potential auxiliary metabolic genes of the ferrochelatases and 2OG-Fe(II) oxygenase orthologous groups compared to non-seasonal types. Chronotypes clustered into four groups based on their correlation profiles with environmental parameters, primarily driven by temperature and nutrients. Viral contigs exhibited a rapid turnover of polymorphisms, akin to Red Queen dynamics. However, within seasonal chronotypes, some sequences exhibited annual polymorphism recurrence, suggesting that a fraction of the seasonal viral populations evolve more slowly. Classification into chronotypes revealed viral genomic signatures linked to temporal patterns, likely reflecting metabolic adaptations to environmental fluctuations and host dynamics. This novel framework enables the identification of long-term trends in viral composition, environmental influences on genomic structure, and potential viral interactions.

摘要

海洋病毒是海洋生物地球化学的关键参与者,深刻影响着微生物群落的生态和进化。尽管它们很重要,但很少有研究探索过海洋环境中连续的季节性病毒宏基因组时间序列。病毒的动态是复杂的,受到多种因素的影响,如宿主种群动态和环境条件。为了理清病毒群落的复杂性,我们开发了一种无监督机器学习框架,根据时间丰度模式将病毒基因序列分类为“时间型”。通过分析来自英格兰西部海峡的表层病毒宏基因组的季节性逐月时间序列,我们确定了时间型,并比较了它们的功能和进化特征。结果表明存在一致的年度周期,冬季到夏季的组成变化剧烈,夏季到冬季的转变较为稳定。与非季节性类型相比,季节性时间型富含亚铁螯合酶和 2OG-Fe(II)加氧酶同源群的潜在辅助代谢基因。根据与环境参数的相关特征,时间型聚类为四个组,主要由温度和营养驱动。病毒基因序列表现出快速的多态性变化,类似于红皇后动态。然而,在季节性时间型内,一些序列表现出年度多态性重现,表明一部分季节性病毒种群的进化速度较慢。分类为时间型揭示了与时间模式相关的病毒基因组特征,可能反映了对环境波动和宿主动态的代谢适应。该新框架能够识别病毒组成的长期趋势、环境对基因组结构的影响以及潜在的病毒相互作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2ee2/11561400/8cee5ccc5191/wrae216f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验