Suppr超能文献

铌氢薄膜中的结构相变:机械应力、相平衡和临界温度

Structural Phase Transitions in Niobium Hydrogen Thin Films: Mechanical Stress, Phase Equilibria and Critical Temperatures.

作者信息

Wagner Stefan, Klose Philipp, Burlaka Vladimir, Nörthemann Kai, Hamm Magnus, Pundt Astrid

机构信息

Institut für Angewandte Materialien (IAM-WK), Karlsruher Institut für Technologie (KIT), Engelbert-Arnold-Straße 4, 76131, Karlsruhe, Germany.

Institut für Materialphysik der Universität Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.

出版信息

Chemphyschem. 2019 Jul 16;20(14):1890-1904. doi: 10.1002/cphc.201900247. Epub 2019 Jun 27.

Abstract

Metal-hydrogen (M-H) systems offer grand opportunities for studies on fundamental aspects of thermodynamics and kinetics. When the system size is reduced to the nanoscale, microstructural defects as well as mechanical stress affect the systems' properties. This is contemplated for the model system of epitaxial niobium-hydrogen (Nb-H) thin films. Hydrogen absorption in metals commonly leads to lattice expansion which is hindered when the metal adheres to a flat rigid substrate. Consequently, high mechanical stress of about -10 GPa for 1 H/Nb are predicted, in theory. However, metals cannot yield such high stresses and respond with plastic deformation, commonly limiting measured stresses to -2 to -3 GPa for 100 nm Nb-H films. It will be shown that the coherency state changes with film thickness reduction, shifting the onset of plastic deformation to larger hydrogen concentrations. Below critical film thicknesses, plastic deformation is fully absent. The system then behaves purely elastic and ultra-high stress of about -10 (±2) GPa can be obtained. Arising stress controls the phase stability of M-H systems, and the coherency state strongly affects the nucleation and growth dynamics of the phase transition. In case of Nb-H thin films of less than 8 nm thickness the common phase transformation from the α-phase solid solution to the hydride phase is completely suppressed at 300 K. Related effects can be utilised to optimise metal-hydrides used in applications.

摘要

金属 - 氢(M - H)体系为热力学和动力学基本方面的研究提供了绝佳机会。当体系尺寸缩小到纳米尺度时,微观结构缺陷以及机械应力会影响体系的性能。外延铌 - 氢(Nb - H)薄膜的模型体系就考虑到了这一点。金属中的氢吸收通常会导致晶格膨胀,而当金属附着在平坦的刚性衬底上时,这种膨胀会受到阻碍。因此,理论上预测对于1个氢原子/铌原子会产生约 - 10 GPa的高机械应力。然而,金属无法承受如此高的应力,会以塑性变形来响应,对于100 nm的Nb - H薄膜,通常测量到的应力限制在 - 2至 - 3 GPa。结果表明,相干状态会随着薄膜厚度的减小而变化,使塑性变形的起始点向更高的氢浓度移动。在低于临界薄膜厚度时,完全不存在塑性变形。此时体系表现为纯弹性,可获得约 - 10(±2)GPa的超高应力。产生的应力控制着M - H体系的相稳定性,相干状态强烈影响相变的形核和生长动力学。对于厚度小于8 nm的Nb - H薄膜,在300 K时,从α相固溶体到氢化物相的常见相变被完全抑制。相关效应可用于优化应用中使用的金属氢化物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验