Suppr超能文献

调节 TaRu 薄膜的性能以应用于氢气传感。

Tuning the Properties of Thin-Film TaRu for Hydrogen-Sensing Applications.

机构信息

Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JBDelft, The Netherlands.

ISIS Neutron Source, Rutherford Appleton Laboratory, STFC, UKRI, OX11 0QXDidcot, United Kingdom.

出版信息

ACS Appl Mater Interfaces. 2023 Feb 15;15(6):8033-8045. doi: 10.1021/acsami.2c20112. Epub 2023 Feb 3.

Abstract

Accurate, cost-efficient, and safe hydrogen sensors will play a key role in the future hydrogen economy. Optical hydrogen sensors based on metal hydrides are attractive owing to their small size and costs and the fact that they are intrinsically safe. These sensors rely on suitable sensing materials, of which the optical properties change when they absorb hydrogen if they are in contact with a hydrogen-containing environment. Here, we illustrate how we can use alloying to tune the properties of hydrogen-sensing materials by considering thin films consisting of tantalum doped with ruthenium. Using a combination of optical transmission measurements, ex situ and in situ X-ray diffraction, and neutron and X-ray reflectometry, we show that introducing Ru in Ta results in a solid solution of Ta and Ru up to at least 30% Ru. The alloying has two major effects: the compression of the unit cell with increasing Ru doping modifies the enthalpy of hydrogenation and thereby shifts the pressure window in which the material absorbs hydrogen to higher hydrogen concentrations, and it reduces the amount of hydrogen absorbed by the material. This allows one to tune the pressure/concentration window of the sensor and its sensitivity and makes TaRu an ideal hysteresis-free tunable hydrogen-sensing material with a sensing range of >7 orders of magnitude in pressure. In a more general perspective, these results demonstrate that one can rationally tune the properties of metal hydride optical hydrogen-sensing layers by appropriate alloying.

摘要

准确、经济高效且安全的氢气传感器将在未来的氢能经济中发挥关键作用。基于金属氢化物的光学氢气传感器因其体积小、成本低且本质安全而具有吸引力。这些传感器依赖于合适的传感材料,如果它们与含氢环境接触,其光学性质在吸收氢气时会发生变化。在这里,我们通过考虑掺杂钽的钌的薄膜来说明如何通过合金化来调整氢气传感材料的性能。我们使用光学透射测量、原位和非原位 X 射线衍射以及中子和 X 射线反射率测量的组合,表明在 Ta 中引入 Ru 会导致 Ta 和 Ru 的固溶体,至少达到 30%的 Ru。合金化有两个主要影响:随着 Ru 掺杂的增加,单位晶胞的压缩会改变氢化焓,从而将材料吸收氢气的压力窗口转移到更高的氢气浓度,并且会减少材料吸收的氢气量。这使得人们可以调整传感器的压力/浓度窗口及其灵敏度,并使 TaRu 成为一种理想的无滞后可调谐氢气传感材料,其压力感应范围超过 7 个数量级。从更广泛的角度来看,这些结果表明,人们可以通过适当的合金化来合理地调整金属氢化物光学氢气传感层的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8538/9940109/0eaa5ef6e233/am2c20112_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验