National Laboratory of Solid-State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China.
Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China.
Nano Lett. 2020 Apr 8;20(4):2791-2798. doi: 10.1021/acs.nanolett.0c00471. Epub 2020 Mar 10.
As the two most representative operation modes in an optical imaging system, bright-field imaging and phase contrast imaging can extract different morphological information on an object. Developing a miniature and low-cost system capable of switching between these two imaging modes is thus very attractive for a number of applications, such as biomedical imaging. Here, we propose and demonstrate that a Fourier transform setup incorporating an all-dielectric metasurface can perform a two-dimensional spatial differentiation operation and thus achieve isotropic edge detection. In addition, the metasurface can provide two spin-dependent, uncorrelated phase profiles across the entire visible spectrum. Therefore, based on the spin-state of incident light, the system can be used for either diffraction-limited bright-field imaging or isotropic edge-enhanced phase contrast imaging. Combined with the advantages of planar architecture and ultrathin thickness of the metasurface, we envision this approach may open new vistas in the very interdisciplinary field of imaging and microscopy.
作为光学成像系统中两种最具代表性的操作模式,明场成像和相衬成像可以提取物体的不同形态信息。因此,开发一种能够在这两种成像模式之间切换的微型、低成本系统对于许多应用(如生物医学成像)非常有吸引力。在这里,我们提出并证明了一种包含全介质超表面的傅里叶变换装置可以执行二维空间微分操作,从而实现各向同性边缘检测。此外,超表面可以在整个可见光谱范围内提供两个自旋相关的、不相关的相位分布。因此,根据入射光的自旋状态,该系统可用于衍射受限的明场成像或各向同性边缘增强的相衬成像。结合超表面的平面结构和超薄厚度的优点,我们可以预见这种方法可能会在成像和显微镜学这一非常跨学科的领域开辟新的视野。