Suppr超能文献

神经递质受体的表面转运:从培养神经元到完整脑制剂。

Surface trafficking of neurotransmitter receptors: From cultured neurons to intact brain preparations.

机构信息

Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000, Bordeaux, France; CNRS, IINS UMR 5297, 33000, Bordeaux, France.

Université de Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, 33000, Bordeaux, France; CNRS, IINS UMR 5297, 33000, Bordeaux, France.

出版信息

Neuropharmacology. 2020 Jun 1;169:107642. doi: 10.1016/j.neuropharm.2019.05.019. Epub 2019 May 17.

Abstract

Over the last decade, developments in single molecule imaging have changed our vision of synaptic physiology. By providing high spatio-temporal resolution maps of the molecular actors of neurotransmissions, these techniques have revealed that pre- and post-synaptic proteins are not randomly distributed but precisely organized at the nanoscale, and that this specific organization is dynamically regulated. At the centre of synaptic transmissions, neurotransmitter receptors have been shown to form nanodomains at synapses and to dynamically move in and out of these confinement areas through lateral diffusion within the membrane plane on millisecond timescales, thereby directly contributing to the regulation of synaptic transmission and plasticity. Since the vast majority of these discoveries originated from observations made on dissociated neurons lacking several features of brain tissue (e.g. three-dimensional organization, tissue density), they were initially considered with caution. However, the recent implementation of single-particle tracking (SPT) approaches in cultured and acute brain preparations confirmed that early findings on the dynamic properties of receptors at the surface of neurons can be extended to more physiological conditions. Taking example of dopamine D1 and NMDA glutamate receptors we here review our current knowledge of the features of neurotransmitter receptor surface diffusion in intact brain tissue. Through detailed comparison with cultured neurons, we also discuss how these biophysical properties are influenced by the complexity of the extracellular environment. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.

摘要

在过去的十年中,单分子成像技术的发展改变了我们对突触生理学的认识。这些技术提供了神经递质分子作用物的高时空分辨率图谱,揭示了突触前和突触后蛋白并非随机分布,而是在纳米尺度上精确组织,并且这种特定的组织是动态调节的。在突触传递的中心,神经递质受体已被证明在突触处形成纳米域,并通过在毫秒时间尺度内在膜平面内的侧向扩散在这些限制区域内外动态移动,从而直接参与突触传递和可塑性的调节。由于这些发现中的绝大多数都源于对分离神经元的观察,这些神经元缺乏脑组织的几个特征(例如三维组织、组织密度),因此这些发现最初受到了谨慎的对待。然而,最近在培养和急性脑制剂中实施的单粒子跟踪(SPT)方法证实,早期关于神经元表面受体动态特性的发现可以扩展到更生理的条件。以多巴胺 D1 和 NMDA 谷氨酸受体为例,我们在这里回顾了我们对完整脑组织中神经递质受体表面扩散特征的现有认识。通过与培养神经元的详细比较,我们还讨论了这些生物物理特性如何受到细胞外环境复杂性的影响。本文是题为“神经元膜蛋白的流动性和运输”的特刊的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验