Suppr超能文献

安全性能函数用于预测碰撞频率是否因空间而异?应用地理加权回归来考虑空间异质性。

Do safety performance functions used for predicting crash frequency vary across space? Applying geographically weighted regressions to account for spatial heterogeneity.

机构信息

Postdoctoral Fellow, Center for Transportation Research (CTR), University of Texas at Austin, United States.

Beaman Professor, Department of Civil & Environmental Engineering, The University of Tennessee, United States.

出版信息

Accid Anal Prev. 2017 Dec;109:132-142. doi: 10.1016/j.aap.2017.10.012. Epub 2017 Oct 21.

Abstract

Safety Performance Functions (SPFs) provide a basis for identifying locations where countermeasures can be effective. While SPFs in the Highway Safety Manual (HSM) were calibrated based on data from select states, calibration factors can be developed to localize SPFs to other states. Calibration factors typically provide a coarse adjustment-time and space stationarity of associations between crash frequencies and various factors is still assumed, implying that the SPF functional form is transferable. However, with increasing availability of statewide geo-referenced safety data, new spatial analysis methods, and increasing computational power, it is possible to relax the stationarity assumption. Specifically, to address spatial heterogeneity in SPFs, this study proposes relaxing SPFs (referring to them as Localized SPFs (L-SPFs)) that can be developed by using sophisticated geo-spatial modeling techniques that allow correlates of crash frequencies to vary in space. For demonstration, a 2013 geo-referenced freeway crash and traffic database from Virginia is used. As a potential methodological alternative, crash frequencies are predicted by estimating Geographically Weighted Negative Binomial Regressions. This model significantly outperforms the traditional negative binomial model in terms of model goodness-of-fit, providing a better and fuller understanding of spatial variations in modeled relationships. Our study results uncover significant spatial variations in parameter estimates for Annual Average Daily Traffic (AADT) and segment length. Ignoring such variations can result in prediction errors. The results indicate low transferability of a single statewide SPF highlighting the importance of developing L-SPFs. From a practical standpoint, L-SPFs can better predict crash frequencies and support prioritizing safety improvements in specific locations.

摘要

安全绩效函数 (SPF) 为确定可以采取有效措施的地点提供了基础。虽然《公路安全手册》(HSM) 中的 SPF 是根据选定州的数据进行校准的,但可以开发校准因子将 SPF 本地化到其他州。校准因子通常提供粗略调整——假设与碰撞频率相关的时间和空间稳定性仍然存在,即 SPF 函数形式是可转移的。然而,随着全州地理参考安全数据的可用性增加、新的空间分析方法和计算能力的提高,有可能放宽稳定性假设。具体来说,为了解决 SPF 中的空间异质性,本研究提出了放宽 SPF(称为本地化 SPF (L-SPF))的概念,可以通过使用复杂的地理空间建模技术来开发 L-SPF,这些技术允许与碰撞频率相关的因素在空间上发生变化。为了演示,使用了来自弗吉尼亚州的 2013 年地理参考高速公路碰撞和交通数据库。作为一种潜在的方法选择,可以通过估计地理加权负二项回归来预测碰撞频率。与传统的负二项模型相比,该模型在模型拟合优度方面表现出色,提供了对建模关系空间变化的更好和更全面的理解。我们的研究结果揭示了 Annual Average Daily Traffic (AADT) 和路段长度的参数估计值存在显著的空间变化。忽略这些变化可能会导致预测错误。结果表明,单个全州范围的 SPF 可转移性较低,突出了开发 L-SPF 的重要性。从实际的角度来看,L-SPF 可以更好地预测碰撞频率,并支持在特定地点优先进行安全改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验