Suppr超能文献

微工程化肠道芯片中经上皮形态发生素梯度和流动依赖性物理线索控制的人类肠道形态发生

Human Intestinal Morphogenesis Controlled by Transepithelial Morphogen Gradient and Flow-Dependent Physical Cues in a Microengineered Gut-on-a-Chip.

作者信息

Shin Woojung, Hinojosa Christopher D, Ingber Donald E, Kim Hyun Jung

机构信息

Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA.

Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.

出版信息

iScience. 2019 May 31;15:391-406. doi: 10.1016/j.isci.2019.04.037. Epub 2019 May 3.

Abstract

We leveraged a human gut-on-a-chip (Gut Chip) microdevice that enables independent control of fluid flow and mechanical deformations to explore how physical cues and morphogen gradients influence intestinal morphogenesis. Both human intestinal Caco-2 and intestinal organoid-derived primary epithelial cells formed three-dimensional (3D) villi-like microarchitecture when exposed to apical and basal fluid flow; however, 3D morphogenesis did not occur and preformed villi-like structure involuted when basal flow was ceased. When cells were cultured in static Transwells, similar morphogenesis could be induced by removing or diluting the basal medium. Computational simulations and experimental studies revealed that the establishment of a transepithelial gradient of the Wnt antagonist Dickkopf-1 and flow-induced regulation of the Frizzled-9 receptor mediate the histogenesis. Computational simulations also predicted spatial growth patterns of 3D epithelial morphology observed experimentally in the Gut Chip. A microengineered Gut Chip may be useful for studies analyzing stem cell biology and tissue development.

摘要

我们利用了一种人体肠道芯片(肠道芯片)微设备,该设备能够独立控制流体流动和机械变形,以探索物理线索和形态发生素梯度如何影响肠道形态发生。当暴露于顶端和基底流体流动时,人肠道Caco-2细胞和肠道类器官衍生的原代上皮细胞均形成了三维(3D)绒毛状微结构;然而,当基底流动停止时,3D形态发生并未发生,且预先形成的绒毛状结构内卷。当细胞在静态Transwell中培养时,通过去除或稀释基底培养基可诱导出类似的形态发生。计算模拟和实验研究表明,Wnt拮抗剂Dickkopf-1的跨上皮梯度的建立以及Frizzled-9受体的流动诱导调节介导了组织发生。计算模拟还预测了在肠道芯片中实验观察到的3D上皮形态的空间生长模式。一种微工程化的肠道芯片可能有助于分析干细胞生物学和组织发育的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8974/6526295/12c3c9e1375a/fx1.jpg

相似文献

2
In Vitro Morphogenesis and Differentiation of Human Intestinal Epithelium in a Gut-on-a-Chip.
Methods Mol Biol. 2023;2650:197-206. doi: 10.1007/978-1-0716-3076-1_15.
3
3D in vitro morphogenesis of human intestinal epithelium in a gut-on-a-chip or a hybrid chip with a cell culture insert.
Nat Protoc. 2022 Mar;17(3):910-939. doi: 10.1038/s41596-021-00674-3. Epub 2022 Feb 2.
4
Multiplex recreation of human intestinal morphogenesis on a multi-well insert platform by basolateral convective flow.
Lab Chip. 2021 Sep 7;21(17):3316-3327. doi: 10.1039/d1lc00404b. Epub 2021 Jul 29.
6
Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation.
Integr Biol (Camb). 2013 Sep;5(9):1130-40. doi: 10.1039/c3ib40126j.
7
Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip.
Methods Cell Biol. 2018;146:135-148. doi: 10.1016/bs.mcb.2018.05.006. Epub 2018 Jun 25.

引用本文的文献

1
Numerical models for organ-on-a-chip: A systematic review and analyses.
Biomicrofluidics. 2025 Jul 1;19(4):041501. doi: 10.1063/5.0260477. eCollection 2025 Jul.
2
Geometrically Controlled WNT Activation Drives Intestinal Morphogenesis.
Adv Healthc Mater. 2025 Sep;14(23):e2502832. doi: 10.1002/adhm.202502832. Epub 2025 Jun 23.
3
Advancing intestinal disease research using gut-on-a-chip.
Regen Ther. 2025 May 6;29:541-550. doi: 10.1016/j.reth.2025.04.023. eCollection 2025 Jun.
4
Engineered Tissue Models to Decode Host-Microbiota Interactions.
Adv Sci (Weinh). 2025 Jun;12(23):e2417687. doi: 10.1002/advs.202417687. Epub 2025 May 14.
5
A Versatile and Modular Microfluidic System for Dynamic Cell Culture and Cellular Interactions.
Micromachines (Basel). 2025 Feb 19;16(2):237. doi: 10.3390/mi16020237.
6
Mechanobiological Approach for Intestinal Mucosal Immunology.
Biology (Basel). 2025 Jan 22;14(2):110. doi: 10.3390/biology14020110.
7
DNA microbeads for spatio-temporally controlled morphogen release within organoids.
Nat Nanotechnol. 2024 Dec;19(12):1849-1857. doi: 10.1038/s41565-024-01779-y. Epub 2024 Sep 9.
9
Intestinal organ chips for disease modelling and personalized medicine.
Nat Rev Gastroenterol Hepatol. 2024 Nov;21(11):751-773. doi: 10.1038/s41575-024-00968-3. Epub 2024 Aug 27.
10
Establishment and evaluation of on-chip intestinal barrier biosystems based on microfluidic techniques.
Mater Today Bio. 2024 May 5;26:101079. doi: 10.1016/j.mtbio.2024.101079. eCollection 2024 Jun.

本文引用的文献

2
Intestinal barrier dysfunction orchestrates the onset of inflammatory host-microbiome cross-talk in a human gut inflammation-on-a-chip.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10539-E10547. doi: 10.1073/pnas.1810819115. Epub 2018 Oct 22.
3
Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids.
Sci Rep. 2018 Feb 13;8(1):2871. doi: 10.1038/s41598-018-21201-7.
4
Transcellular vesicular transport in epithelial and endothelial cells: Challenges and opportunities.
Traffic. 2018 Jan;19(1):5-18. doi: 10.1111/tra.12533. Epub 2017 Nov 21.
5
Mend Your Fences: The Epithelial Barrier and its Relationship With Mucosal Immunity in Inflammatory Bowel Disease.
Cell Mol Gastroenterol Hepatol. 2017 Mar 23;4(1):33-46. doi: 10.1016/j.jcmgh.2017.03.007. eCollection 2017 Jul.
7
Replication of human noroviruses in stem cell-derived human enteroids.
Science. 2016 Sep 23;353(6306):1387-1393. doi: 10.1126/science.aaf5211. Epub 2016 Aug 25.
8
Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease.
Differentiation. 2016 Sep;92(3):116-131. doi: 10.1016/j.diff.2016.05.002. Epub 2016 May 7.
9
Wnt Ligands Secreted by Subepithelial Mesenchymal Cells Are Essential for the Survival of Intestinal Stem Cells and Gut Homeostasis.
Cell Rep. 2016 May 3;15(5):911-918. doi: 10.1016/j.celrep.2016.03.088. Epub 2016 Apr 21.
10
Visualization of a short-range Wnt gradient in the intestinal stem-cell niche.
Nature. 2016 Feb 18;530(7590):340-3. doi: 10.1038/nature16937. Epub 2016 Feb 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验