Wang Hui, Li Xiangyang, Shi Pengcheng, You Xiaoyan, Zhao Guoping
Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China.
Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, China.
Mater Today Bio. 2024 May 5;26:101079. doi: 10.1016/j.mtbio.2024.101079. eCollection 2024 Jun.
As a booming engineering technology, the microfluidic chip has been widely applied for replicating the complexity of human intestinal micro-physiological ecosystems . Biosensors, 3D imaging, and multi-omics have been applied to engineer more sophisticated intestinal barrier-on-chip platforms, allowing the improved monitoring of physiological processes and enhancing chip performance. In this review, we report cutting-edge advances in the microfluidic techniques applied for the establishment and evaluation of intestinal barrier platforms. We discuss different design principles and microfabrication strategies for the establishment of microfluidic gut barrier models . Further, we comprehensively cover the complex cell types (e.g., epithelium, intestinal organoids, endothelium, microbes, and immune cells) and controllable extracellular microenvironment parameters (e.g., oxygen gradient, peristalsis, bioflow, and gut-organ axis) used to recapitulate the main structural and functional complexity of gut barriers. We also present the current multidisciplinary technologies and indicators used for evaluating the morphological structure and barrier integrity of established gut barrier models . Finally, we highlight the challenges and future perspectives for accelerating the broader applications of these platforms in disease simulation, drug development, and personalized medicine. Hence, this review provides a comprehensive guide for the development and evaluation of microfluidic-based gut barrier platforms.
作为一种蓬勃发展的工程技术,微流控芯片已被广泛应用于复制人类肠道微生理生态系统的复杂性。生物传感器、3D成像和多组学已被应用于构建更复杂的肠道芯片屏障平台,从而改善对生理过程的监测并提高芯片性能。在本综述中,我们报告了用于建立和评估肠道屏障平台的微流控技术的前沿进展。我们讨论了建立微流控肠道屏障模型的不同设计原则和微加工策略。此外,我们全面涵盖了用于概括肠道屏障主要结构和功能复杂性的复杂细胞类型(如上皮细胞、肠道类器官、内皮细胞、微生物和免疫细胞)以及可控的细胞外微环境参数(如氧梯度、蠕动、生物流和肠-器官轴)。我们还介绍了用于评估已建立的肠道屏障模型的形态结构和屏障完整性的当前多学科技术和指标。最后,我们强调了加速这些平台在疾病模拟、药物开发和个性化医疗中更广泛应用所面临的挑战和未来前景。因此,本综述为基于微流控的肠道屏障平台的开发和评估提供了全面指南。