Suppr超能文献

高通量测序数据中实验诱导核苷酸转换的定量分析。

Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.

机构信息

Research Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna BioCenter (VBC), 1030, Vienna, Austria.

Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, VBC, 1030, Vienna, Austria.

出版信息

BMC Bioinformatics. 2019 May 20;20(1):258. doi: 10.1186/s12859-019-2849-7.

Abstract

BACKGROUND

Methods to read out naturally occurring or experimentally introduced nucleic acid modifications are emerging as powerful tools to study dynamic cellular processes. The recovery, quantification and interpretation of such events in high-throughput sequencing datasets demands specialized bioinformatics approaches.

RESULTS

Here, we present Digital Unmasking of Nucleotide conversions in K-mers (DUNK), a data analysis pipeline enabling the quantification of nucleotide conversions in high-throughput sequencing datasets. We demonstrate using experimentally generated and simulated datasets that DUNK allows constant mapping rates irrespective of nucleotide-conversion rates, promotes the recovery of multimapping reads and employs Single Nucleotide Polymorphism (SNP) masking to uncouple true SNPs from nucleotide conversions to facilitate a robust and sensitive quantification of nucleotide-conversions. As a first application, we implement this strategy as SLAM-DUNK for the analysis of SLAMseq profiles, in which 4-thiouridine-labeled transcripts are detected based on T > C conversions. SLAM-DUNK provides both raw counts of nucleotide-conversion containing reads as well as a base-content and read coverage normalized approach for estimating the fractions of labeled transcripts as readout.

CONCLUSION

Beyond providing a readily accessible tool for analyzing SLAMseq and related time-resolved RNA sequencing methods (TimeLapse-seq, TUC-seq), DUNK establishes a broadly applicable strategy for quantifying nucleotide conversions.

摘要

背景

读取自然发生或实验引入的核酸修饰的方法正在成为研究动态细胞过程的强大工具。在高通量测序数据集中恢复、定量和解释这些事件需要专门的生物信息学方法。

结果

在这里,我们提出了数字消除 K -mer 中核苷酸转换(DUNK),这是一个数据分析管道,能够定量高通量测序数据集中的核苷酸转换。我们使用实验产生和模拟数据集证明,DUNK 允许恒定的映射率,而与核苷酸转换率无关,促进了多映射读取的恢复,并采用单核苷酸多态性(SNP)掩蔽来分离真正的 SNP 与核苷酸转换,以实现核苷酸转换的稳健和敏感定量。作为第一个应用,我们将其作为 SLAM-DUNK 实现,用于分析 SLAMseq 图谱,其中基于 T>C 转换检测 4-硫代尿嘧啶标记的转录本。SLAM-DUNK 提供了包含核苷酸转换的读取的原始计数,以及碱基含量和读取覆盖归一化方法,用于估计标记转录本作为读取的分数。

结论

除了为分析 SLAMseq 和相关的时间分辨 RNA 测序方法(TimeLapse-seq、TUC-seq)提供一个易于访问的工具外,DUNK 还建立了一种广泛适用于定量核苷酸转换的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86d4/6528199/93c2a2550d49/12859_2019_2849_Fig1_HTML.jpg

相似文献

1
Quantification of experimentally induced nucleotide conversions in high-throughput sequencing datasets.
BMC Bioinformatics. 2019 May 20;20(1):258. doi: 10.1186/s12859-019-2849-7.
2
Sequencing cell-type-specific transcriptomes with SLAM-ITseq.
Nat Protoc. 2019 Aug;14(8):2261-2278. doi: 10.1038/s41596-019-0179-x. Epub 2019 Jun 26.
3
Splice_sim: a nucleotide conversion-enabled RNA-seq simulation and evaluation framework.
Genome Biol. 2024 Jun 25;25(1):166. doi: 10.1186/s13059-024-03313-8.
4
Fully automated pipeline for detection of sex linked genes using RNA-Seq data.
BMC Bioinformatics. 2015 Mar 11;16(1):78. doi: 10.1186/s12859-015-0509-0.
5
PARRoT- a homology-based strategy to quantify and compare RNA-sequencing from non-model organisms.
BMC Bioinformatics. 2016 Dec 22;17(Suppl 19):513. doi: 10.1186/s12859-016-1366-1.
6
BASAL: a universal mapping algorithm for nucleotide base-conversion sequencing.
Nucleic Acids Res. 2025 Jan 11;53(2). doi: 10.1093/nar/gkae1201.
7
8
SAKit: An all-in-one analysis pipeline for identifying novel proteins resulting from variant events at both large and small scales.
J Bioinform Comput Biol. 2024 Oct;22(5):2450022. doi: 10.1142/S0219720024500227. Epub 2024 Oct 1.
9
A high-throughput SNP discovery strategy for RNA-seq data.
BMC Genomics. 2019 Feb 27;20(1):160. doi: 10.1186/s12864-019-5533-4.

引用本文的文献

1
RNADecayCafe, a uniformly processed atlas of RNA half-life estimates across multiple human cell lines.
bioRxiv. 2025 Aug 21:2025.08.19.671151. doi: 10.1101/2025.08.19.671151.
2
SLAMseq reveals potential transfer of RNA from liver to kidney in the mouse.
Nat Commun. 2025 Aug 11;16(1):7413. doi: 10.1038/s41467-025-62688-9.
4
Expanding and improving analyses of nucleotide recoding RNA-seq experiments with the EZbakR suite.
PLoS Comput Biol. 2025 Jul 3;21(7):e1013179. doi: 10.1371/journal.pcbi.1013179. eCollection 2025 Jul.
6
The extra-terminal domain drives the role of BET proteins in transcription.
bioRxiv. 2025 May 14:2025.05.12.653540. doi: 10.1101/2025.05.12.653540.
8
mA alters ribosome dynamics to initiate mRNA degradation.
Cell. 2025 May 5. doi: 10.1016/j.cell.2025.04.020.
9
A secretome atlas of cardiac fibroblasts from healthy and infarcted mouse hearts.
Commun Biol. 2025 Apr 29;8(1):675. doi: 10.1038/s42003-025-08083-y.

本文引用的文献

1
Dissecting newly transcribed and old RNA using GRAND-SLAM.
Bioinformatics. 2018 Jul 1;34(13):i218-i226. doi: 10.1093/bioinformatics/bty256.
2
SLAM-ITseq: sequencing cell type-specific transcriptomes without cell sorting.
Development. 2018 Jul 11;145(13):dev164640. doi: 10.1242/dev.164640.
3
SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis.
Science. 2018 May 18;360(6390):800-805. doi: 10.1126/science.aao2793. Epub 2018 Apr 5.
4
A reversible haploid mouse embryonic stem cell biobank resource for functional genomics.
Nature. 2017 Oct 5;550(7674):114-118. doi: 10.1038/nature24027. Epub 2017 Sep 27.
5
Thiol-linked alkylation of RNA to assess expression dynamics.
Nat Methods. 2017 Dec;14(12):1198-1204. doi: 10.1038/nmeth.4435. Epub 2017 Sep 25.
6
Epitranscriptome sequencing technologies: decoding RNA modifications.
Nat Methods. 2016 Dec 29;14(1):23-31. doi: 10.1038/nmeth.4110.
7
MultiQC: summarize analysis results for multiple tools and samples in a single report.
Bioinformatics. 2016 Oct 1;32(19):3047-8. doi: 10.1093/bioinformatics/btw354. Epub 2016 Jun 16.
8
BEDTools: The Swiss-Army Tool for Genome Feature Analysis.
Curr Protoc Bioinformatics. 2014 Sep 8;47:11.12.1-34. doi: 10.1002/0471250953.bi1112s47.
9
NextGenMap: fast and accurate read mapping in highly polymorphic genomes.
Bioinformatics. 2013 Nov 1;29(21):2790-1. doi: 10.1093/bioinformatics/btt468. Epub 2013 Aug 23.
10
VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing.
Genome Res. 2012 Mar;22(3):568-76. doi: 10.1101/gr.129684.111. Epub 2012 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验