Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Vaud, Switzerland.
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
J Cardiovasc Magn Reson. 2019 May 23;21(1):29. doi: 10.1186/s12968-019-0539-2.
Validating new techniques for fetal cardiovascular magnetic resonance (CMR) is challenging due to random fetal movement that precludes repeat measurements. Consequently, fetal CMR development has been largely performed using physical phantoms or postnatal volunteers. In this work, we present an open-source simulation designed to aid in the development and validation of new approaches for fetal CMR. Our approach, fetal extended Cardiac-Torso cardiovascular magnetic resonance imaging (Fetal XCMR), builds on established methods for simulating CMR acquisitions but is tailored toward the dynamic physiology of the fetal heart and body. We present comparisons between the Fetal XCMR phantom and data acquired in utero, resulting in image quality, anatomy, tissue signals and contrast.
Existing extended Cardiac-Torso models are modified to create maternal and fetal anatomy, combined according to simulated motion, mapped to CMR contrast, and converted to CMR data. To provide a comparison between the proposed simulation and experimental fetal CMR images acquired in utero, images from a typical scan of a pregnant woman are included and simulated acquisitions were generated using matching CMR parameters, motion and noise levels. Three reconstruction (static, real-time, and CINE), and two motion estimation methods (translational motion, fetal heart rate) from data acquired in transverse, sagittal, coronal, and short-axis planes of the fetal heart were performed to compare to in utero acquisitions and demonstrate feasibility of the proposed simulation framework.
Overall, CMR contrast, morphologies, and relative proportions of the maternal and fetal anatomy are well represented by the Fetal XCMR images when comparing the simulation to static images acquired in utero. Additionally, visualization of maternal respiratory and fetal cardiac motion is comparable between Fetal XCMR and in utero real-time images. Finally, high quality CINE image reconstructions provide excellent delineation of fetal cardiac anatomy and temporal dynamics for both data types.
The fetal CMR phantom provides a new method for evaluating fetal CMR acquisition and reconstruction methods by simulating the underlying anatomy and physiology. As the field of fetal CMR continues to grow, new methods will become available and require careful validation. The fetal CMR phantom is therefore a powerful and convenient tool in the continued development of fetal cardiac imaging.
由于胎儿随机运动导致无法重复测量,验证胎儿心血管磁共振(CMR)新技术具有挑战性。因此,胎儿 CMR 的发展主要使用物理体模或产后志愿者进行。在这项工作中,我们提出了一种开源模拟,旨在帮助开发和验证胎儿 CMR 的新方法。我们的方法,胎儿扩展心脏-胸部心血管磁共振成像(Fetal XCMR),建立在模拟 CMR 采集的既定方法之上,但针对胎儿心脏和身体的动态生理学进行了调整。我们比较了 Fetal XCMR 体模和宫内采集的数据,得到了图像质量、解剖结构、组织信号和对比度。
对现有的扩展心脏-胸部模型进行修改,以创建母体和胎儿解剖结构,根据模拟运动进行组合,映射到 CMR 对比,并转换为 CMR 数据。为了在提出的模拟和宫内胎儿 CMR 图像之间进行比较,我们包括了来自一位孕妇典型扫描的图像,并使用匹配的 CMR 参数、运动和噪声水平生成了模拟采集。对来自胎儿心脏的横切面、矢状面、冠状面和短轴平面的数据进行了三种重建(静态、实时和电影)和两种运动估计方法(平移运动、胎儿心率),以与宫内采集进行比较,并展示了提出的模拟框架的可行性。
总体而言,当将模拟与宫内静态图像进行比较时,Fetal XCMR 图像很好地代表了 CMR 对比、形态和母体与胎儿解剖结构的相对比例。此外,Fetal XCMR 和宫内实时图像之间的母体呼吸和胎儿心脏运动的可视化也相似。最后,高质量的电影图像重建为两种数据类型提供了出色的胎儿心脏解剖结构和时间动态的描绘。
胎儿 CMR 体模通过模拟潜在的解剖结构和生理学,为评估胎儿 CMR 采集和重建方法提供了一种新方法。随着胎儿 CMR 领域的不断发展,新方法将不断涌现,需要仔细验证。因此,胎儿 CMR 体模是胎儿心脏成像持续发展的有力和方便的工具。