Suppr超能文献

深度学习在 PET/MR 中的定量和定性 PET 中的应用:技术和临床未满足的需求。

Deep learning applications for quantitative and qualitative PET in PET/MR: technical and clinical unmet needs.

机构信息

Department of Radiology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, TX, USA.

Departments of Radiology and Medical Physics, University of Wisconsin-Madison, 600 Highland Ave, Madison, WI, USA.

出版信息

MAGMA. 2024 Aug;37(4):749-763. doi: 10.1007/s10334-024-01199-y. Epub 2024 Aug 21.

Abstract

We aim to provide an overview of technical and clinical unmet needs in deep learning (DL) applications for quantitative and qualitative PET in PET/MR, with a focus on attenuation correction, image enhancement, motion correction, kinetic modeling, and simulated data generation. (1) DL-based attenuation correction (DLAC) remains an area of limited exploration for pediatric whole-body PET/MR and lung-specific DLAC due to data shortages and technical limitations. (2) DL-based image enhancement approximating MR-guided regularized reconstruction with a high-resolution MR prior has shown promise in enhancing PET image quality. However, its clinical value has not been thoroughly evaluated across various radiotracers, and applications outside the head may pose challenges due to motion artifacts. (3) Robust training for DL-based motion correction requires pairs of motion-corrupted and motion-corrected PET/MR data. However, these pairs are rare. (4) DL-based approaches can address the limitations of dynamic PET, such as long scan durations that may cause patient discomfort and motion, providing new research opportunities. (5) Monte-Carlo simulations using anthropomorphic digital phantoms can provide extensive datasets to address the shortage of clinical data. This summary of technical/clinical challenges and potential solutions may provide research opportunities for the research community towards the clinical translation of DL solutions.

摘要

我们旨在提供一个概述的技术和临床需求未得到满足的深度学习(DL)应用程序的定量和定性的 PET /磁共振,重点是衰减校正,图像增强,运动校正,动力学建模和模拟数据生成。(1)基于 DL 的衰减校正(DLAC)仍然是一个有限的探索领域,小儿全身 PET /磁共振和肺特异性 DLAC由于数据短缺和技术限制。(2)基于 DL 的图像增强近似磁共振引导正则化重建具有高分辨率的磁共振先验已显示出有希望提高 PET 图像质量。然而,它的临床价值尚未在各种放射性示踪剂中得到彻底评估,并且头部以外的应用可能由于运动伪影而带来挑战。(3)基于 DL 的运动校正的鲁棒训练需要一对运动污染和运动校正的 PET /磁共振数据。然而,这些对是罕见的。(4)基于 DL 的方法可以解决动态 PET 的局限性,如扫描时间长可能导致患者不适和运动,提供新的研究机会。(5)使用人体数字体模的蒙特卡罗模拟可以提供广泛的数据集,以解决临床数据的短缺。对技术/临床挑战和潜在解决方案的总结可以为研究社区提供研究机会,以实现 DL 解决方案的临床转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验