Suppr超能文献

- 特异性凝聚蛋白的结合与基因调控元件处活性组蛋白修饰的减少相关。

Binding of an -Specific Condensin Correlates with a Reduction in Active Histone Modifications at Gene Regulatory Elements.

机构信息

Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003.

Department of Biology, Center for Genomics and Systems Biology, New York University, New York 10003

出版信息

Genetics. 2019 Jul;212(3):729-742. doi: 10.1534/genetics.119.302254. Epub 2019 May 22.

Abstract

Condensins are evolutionarily conserved protein complexes that are required for chromosome segregation during cell division and genome organization during interphase. In , a specialized condensin, which forms the core of the dosage compensation complex (DCC), binds to and represses chromosome transcription. Here, we analyzed DCC localization and the effect of DCC depletion on histone modifications, transcription factor binding, and gene expression using chromatin immunoprecipitation sequencing and mRNA sequencing. Across the , the DCC accumulates at accessible gene regulatory sites in active chromatin and not heterochromatin. The DCC is required for reducing the levels of activating histone modifications, including H3K4me3 and H3K27ac, but not repressive modification H3K9me3. In -to-autosome fusion chromosomes, DCC spreading into the autosomal sequences locally reduces gene expression, thus establishing a direct link between DCC binding and repression. Together, our results indicate that DCC-mediated transcription repression is associated with a reduction in the activity of chromosomal gene regulatory elements.

摘要

凝缩素是进化上保守的蛋白质复合物,对于细胞分裂过程中的染色体分离和细胞间期的基因组组织是必需的。在 中,一种特殊的凝缩素,它形成了剂量补偿复合物(DCC)的核心,与 染色体的转录结合并抑制其转录。在这里,我们使用染色质免疫沉淀测序和 mRNA 测序分析了 DCC 的定位以及 DCC 耗竭对组蛋白修饰、转录因子结合和基因表达的影响。在 中,DCC 聚集在活性染色质而非异染色质的可及性基因调控位点上。DCC 对于降低激活组蛋白修饰的水平是必需的,包括 H3K4me3 和 H3K27ac,但不降低抑制性修饰 H3K9me3。在 X 染色体与常染色体融合的染色体中,DCC 向常染色体序列的扩展局部降低了基因表达,从而在 DCC 结合和抑制之间建立了直接联系。总之,我们的结果表明,DCC 介导的转录抑制与 染色体基因调控元件活性的降低有关。

相似文献

1
Binding of an -Specific Condensin Correlates with a Reduction in Active Histone Modifications at Gene Regulatory Elements.
Genetics. 2019 Jul;212(3):729-742. doi: 10.1534/genetics.119.302254. Epub 2019 May 22.
2
SUMOylation is essential for sex-specific assembly and function of the Caenorhabditis elegans dosage compensation complex on X chromosomes.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3810-9. doi: 10.1073/pnas.1315793110. Epub 2013 Sep 16.
3
Condensin-driven remodelling of X chromosome topology during dosage compensation.
Nature. 2015 Jul 9;523(7559):240-4. doi: 10.1038/nature14450. Epub 2015 Jun 1.
4
Caenorhabditis elegans Dosage Compensation: Insights into Condensin-Mediated Gene Regulation.
Trends Genet. 2018 Jan;34(1):41-53. doi: 10.1016/j.tig.2017.09.010. Epub 2017 Oct 13.
6
X Chromosome Domain Architecture Regulates Caenorhabditis elegans Lifespan but Not Dosage Compensation.
Dev Cell. 2019 Oct 21;51(2):192-207.e6. doi: 10.1016/j.devcel.2019.08.004. Epub 2019 Sep 5.
8
An SMC-like protein binds and regulates Caenorhabditis elegans condensins.
PLoS Genet. 2017 Mar 16;13(3):e1006614. doi: 10.1371/journal.pgen.1006614. eCollection 2017 Mar.
9
The worm solution: a chromosome-full of condensin helps gene expression go down.
Chromosome Res. 2009;17(5):621-35. doi: 10.1007/s10577-009-9061-y.
10
Genome-wide analysis of condensin binding in Caenorhabditis elegans.
Genome Biol. 2013;14(10):R112. doi: 10.1186/gb-2013-14-10-r112.

引用本文的文献

1
SMC-mediated dosage compensation in evolved in the presence of an ancestral nematode mechanism.
bioRxiv. 2024 May 24:2024.05.21.595224. doi: 10.1101/2024.05.21.595224.
2
Analysis of developmental gene expression using smFISH and staging of embryos.
bioRxiv. 2024 May 16:2024.05.15.594414. doi: 10.1101/2024.05.15.594414.
3
Revisiting Fur Regulon Leads to a Comprehensive Understanding of Iron and Fur Regulation.
Int J Mol Sci. 2023 May 22;24(10):9078. doi: 10.3390/ijms24109078.
5
Topoisomerases I and II facilitate condensin DC translocation to organize and repress X chromosomes in C. elegans.
Mol Cell. 2022 Nov 17;82(22):4202-4217.e5. doi: 10.1016/j.molcel.2022.10.002. Epub 2022 Oct 26.
6
7
Mechanisms of sex determination and X-chromosome dosage compensation.
Genetics. 2022 Feb 4;220(2). doi: 10.1093/genetics/iyab197.
8
The histone H4 lysine 20 demethylase DPY-21 regulates the dynamics of condensin DC binding.
J Cell Sci. 2022 Jan 15;135(2). doi: 10.1242/jcs.258818. Epub 2022 Jan 26.
9
Characterization of histone modification patterns and prediction of novel promoters using functional principal component analysis.
PLoS One. 2020 May 27;15(5):e0233630. doi: 10.1371/journal.pone.0233630. eCollection 2020.
10
Histone H3K9 methylation promotes formation of genome compartments in via chromosome compaction and perinuclear anchoring.
Proc Natl Acad Sci U S A. 2020 May 26;117(21):11459-11470. doi: 10.1073/pnas.2002068117. Epub 2020 May 8.

本文引用的文献

1
Lysine 27 of replication-independent histone H3.3 is required for Polycomb target gene silencing but not for gene activation.
PLoS Genet. 2019 Jan 30;15(1):e1007932. doi: 10.1371/journal.pgen.1007932. eCollection 2019 Jan.
2
Organizational principles of 3D genome architecture.
Nat Rev Genet. 2018 Dec;19(12):789-800. doi: 10.1038/s41576-018-0060-8.
3
Condensin action and compaction.
Curr Genet. 2019 Apr;65(2):407-415. doi: 10.1007/s00294-018-0899-4. Epub 2018 Oct 25.
5
SMC Complexes: Universal DNA Looping Machines with Distinct Regulators.
Trends Genet. 2018 Jun;34(6):477-487. doi: 10.1016/j.tig.2018.03.003. Epub 2018 Mar 29.
6
Chromatin accessibility dynamics reveal novel functional enhancers in .
Genome Res. 2017 Dec;27(12):2096-2107. doi: 10.1101/gr.226233.117. Epub 2017 Nov 15.
7
Genome-wide discovery of active regulatory elements and transcription factor footprints in using DNase-seq.
Genome Res. 2017 Dec;27(12):2108-2119. doi: 10.1101/gr.223735.117. Epub 2017 Oct 26.
8
Caenorhabditis elegans Dosage Compensation: Insights into Condensin-Mediated Gene Regulation.
Trends Genet. 2018 Jan;34(1):41-53. doi: 10.1016/j.tig.2017.09.010. Epub 2017 Oct 13.
9
Structural Basis for a Safety-Belt Mechanism That Anchors Condensin to Chromosomes.
Cell. 2017 Oct 19;171(3):588-600.e24. doi: 10.1016/j.cell.2017.09.008. Epub 2017 Oct 5.
10
Dynamic Control of X Chromosome Conformation and Repression by a Histone H4K20 Demethylase.
Cell. 2017 Sep 21;171(1):85-102.e23. doi: 10.1016/j.cell.2017.07.041. Epub 2017 Aug 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验