Suppr超能文献

倾斜反铁磁体SrIrO₃中的巨各向异性磁电阻和非易失性存储器

Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet SrIrO.

作者信息

Wang Haowen, Lu Chengliang, Chen Jun, Liu Yong, Yuan S L, Cheong Sang-Wook, Dong Shuai, Liu Jun-Ming

机构信息

School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074, Wuhan, China.

School of Physics, Southeast University, 211189, Nanjing, China.

出版信息

Nat Commun. 2019 May 23;10(1):2280. doi: 10.1038/s41467-019-10299-6.

Abstract

Antiferromagnets have been generating intense interest in the spintronics community, owing to their intrinsic appealing properties like zero stray field and ultrafast spin dynamics. While the control of antiferromagnetic (AFM) orders has been realized by various means, applicably appreciated functionalities on the readout side of AFM-based devices are urgently desired. Here, we report the remarkably enhanced anisotropic magnetoresistance (AMR) as giant as ~160% in a simple resistor structure made of AFM SrIrO without auxiliary reference layer. The underlying mechanism for the giant AMR is an indispensable combination of atomic scale giant-MR-like effect and magnetocrystalline anisotropy energy, which was not accessed earlier. Furthermore, we demonstrate the bistable nonvolatile memory states that can be switched in-situ without the inconvenient heat-assisted procedure, and robustly preserved even at zero magnetic field, due to the modified interlayer coupling by 1% Ga-doping in SrIrO. These findings represent a straightforward step toward the AFM spintronic devices.

摘要

反铁磁体因其诸如零杂散场和超快自旋动力学等内在吸引人的特性,在自旋电子学领域引起了强烈关注。虽然已经通过各种手段实现了对反铁磁(AFM)序的控制,但基于AFM的器件在读出方面急需具有适用性的功能。在此,我们报道了在由AFM SrIrO制成的简单电阻器结构中,在没有辅助参考层的情况下,各向异性磁电阻(AMR)显著增强,高达约160%。巨大AMR的潜在机制是原子尺度类巨磁电阻效应和磁晶各向异性能量的不可或缺的组合,这是此前未曾涉及的。此外,我们展示了双稳态非易失性存储状态,由于在SrIrO中1%的Ga掺杂改变了层间耦合,该状态可以在不借助不便的热辅助过程的情况下原位切换,并且即使在零磁场下也能稳健保持。这些发现代表了朝着AFM自旋电子器件迈出的直接一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/935d/6533248/04d003aedc2a/41467_2019_10299_Fig1_HTML.jpg

相似文献

1
Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet SrIrO.
Nat Commun. 2019 May 23;10(1):2280. doi: 10.1038/s41467-019-10299-6.
2
Anisotropic magnetoresistance in an antiferromagnetic semiconductor.
Nat Commun. 2014 Sep 10;5:4671. doi: 10.1038/ncomms5671.
3
Tunneling Magnetoresistance in Noncollinear Antiferromagnetic Tunnel Junctions.
Phys Rev Lett. 2022 May 13;128(19):197201. doi: 10.1103/PhysRevLett.128.197201.
4
Magnetic Anisotropy of a Quasi Two-Dimensional Canted Antiferromagnet.
Nano Lett. 2020 Mar 11;20(3):1890-1895. doi: 10.1021/acs.nanolett.9b05120. Epub 2020 Feb 13.
5
Nonvolatile Electric Control of Antiferromagnet CrSBr.
Nano Lett. 2024 Apr 17;24(15):4471-4477. doi: 10.1021/acs.nanolett.4c00348. Epub 2024 Apr 8.
6
A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction.
Nat Mater. 2011 May;10(5):347-51. doi: 10.1038/nmat2983. Epub 2011 Mar 13.
7
Antiferromagnet-Based Spintronic Functionality by Controlling Isospin Domains in a Layered Perovskite Iridate.
Adv Mater. 2018 Dec;30(52):e1805564. doi: 10.1002/adma.201805564. Epub 2018 Oct 29.
9
Room-temperature antiferromagnetic memory resistor.
Nat Mater. 2014 Apr;13(4):367-74. doi: 10.1038/nmat3861. Epub 2014 Jan 26.
10
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe.
Nat Commun. 2016 Jun 9;7:11623. doi: 10.1038/ncomms11623.

引用本文的文献

1
Tunable magnons of an antiferromagnetic Mott insulator via interfacial metal-insulator transitions.
Nat Commun. 2025 Apr 15;16(1):3592. doi: 10.1038/s41467-025-58922-z.
2
Nonlinear Optics in Two-Dimensional Magnetic Materials: Advancements and Opportunities.
Nanomaterials (Basel). 2025 Jan 2;15(1):63. doi: 10.3390/nano15010063.
3
Anisotropic magnetoresistance in altermagnetic MnTe.
Npj Spintron. 2024;2(1):45. doi: 10.1038/s44306-024-00046-z. Epub 2024 Aug 13.
5
Giant stress response of terahertz magnons in a spin-orbit Mott insulator.
Nat Commun. 2022 Nov 5;13(1):6674. doi: 10.1038/s41467-022-34375-6.
6
Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors.
Nature. 2021 Nov;599(7886):576-581. doi: 10.1038/s41586-021-04028-7. Epub 2021 Nov 24.
7
Tunable high-temperature itinerant antiferromagnetism in a van der Waals magnet.
Nat Commun. 2021 May 14;12(1):2844. doi: 10.1038/s41467-021-23122-y.
8
Strain engineering of the charge and spin-orbital interactions in SrIrO.
Proc Natl Acad Sci U S A. 2020 Oct 6;117(40):24764-24770. doi: 10.1073/pnas.2012043117. Epub 2020 Sep 21.

本文引用的文献

1
Pseudo-Jahn-Teller Effect and Magnetoelastic Coupling in Spin-Orbit Mott Insulators.
Phys Rev Lett. 2019 Feb 8;122(5):057203. doi: 10.1103/PhysRevLett.122.057203.
2
Antiferromagnet-Based Spintronic Functionality by Controlling Isospin Domains in a Layered Perovskite Iridate.
Adv Mater. 2018 Dec;30(52):e1805564. doi: 10.1002/adma.201805564. Epub 2018 Oct 29.
3
Terahertz electrical writing speed in an antiferromagnetic memory.
Sci Adv. 2018 Mar 23;4(3):eaar3566. doi: 10.1126/sciadv.aar3566. eCollection 2018 Mar.
5
How to manipulate magnetic states of antiferromagnets.
Nanotechnology. 2018 Mar 16;29(11):112001. doi: 10.1088/1361-6528/aaa812.
6
Spin-Polarized Current in Noncollinear Antiferromagnets.
Phys Rev Lett. 2017 Nov 3;119(18):187204. doi: 10.1103/PhysRevLett.119.187204. Epub 2017 Nov 2.
8
Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.
Sci Rep. 2016 Oct 20;6:35471. doi: 10.1038/srep35471.
9
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe.
Nat Commun. 2016 Jun 9;7:11623. doi: 10.1038/ncomms11623.
10
Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.
Sci Adv. 2016 Apr 15;2(4):e1501870. doi: 10.1126/sciadv.1501870. eCollection 2016 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验