Suppr超能文献

反铁磁金属铱锰中的等温各向异性磁阻

Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

作者信息

Galceran R, Fina I, Cisneros-Fernández J, Bozzo B, Frontera C, López-Mir L, Deniz H, Park K-W, Park B-G, Balcells Ll, Martí X, Jungwirth T, Martínez B

机构信息

Institut de Ciència de Materials de Barcelona (CSIC), Campus de Bellaterra, 08193 Bellaterra, Spain.

Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, Palaiseau 91767, France.

出版信息

Sci Rep. 2016 Oct 20;6:35471. doi: 10.1038/srep35471.

Abstract

Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

摘要

反铁磁自旋电子学是一个新兴领域;反铁磁体可以提高铁磁体的功能,具有更高的响应时间,并能使信息免受外部磁场干扰。此外,还存在大量奈尔温度高于室温的反铁磁半导体和金属。在本论文中,我们致力于探索具有非常大的自旋轨道耦合的反铁磁材料中各向异性磁电阻能有多大的极限。我们选择IrMn作为一流磁矩(Mn)和自旋轨道(Ir)组合的典型例子。对反铁磁金属(IrMn)/铁磁绝缘体薄膜双层进行了等温磁输运测量。两层之间具有磁耦合的金属/绝缘体结构使得能够专门测量反铁磁层中输运性质的调制。发现各向异性磁电阻高达0.15%,这比裸露的IrMn层要大得多。有趣的是,已经观察到各向异性磁电阻受到场冷条件的强烈影响,这表明所发现的响应依赖于在磁有序温度下畴的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae94/5071853/0895360c11ca/srep35471-f1.jpg

相似文献

1
Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.
Sci Rep. 2016 Oct 20;6:35471. doi: 10.1038/srep35471.
2
A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction.
Nat Mater. 2011 May;10(5):347-51. doi: 10.1038/nmat2983. Epub 2011 Mar 13.
3
Mn2C monolayer: a 2D antiferromagnetic metal with high Néel temperature and large spin-orbit coupling.
Nanoscale. 2016 Jul 14;8(26):12939-45. doi: 10.1039/c6nr02417c. Epub 2016 Jun 15.
5
Revealing the properties of Mn2Au for antiferromagnetic spintronics.
Nat Commun. 2013;4:2892. doi: 10.1038/ncomms3892.
6
Modeling anisotropic magnetoresistance in layered antiferromagnets.
J Phys Condens Matter. 2017 Jun 14;29(23):235302. doi: 10.1088/1361-648X/aa6b2b. Epub 2017 Apr 4.
7
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe.
Nat Commun. 2016 Jun 9;7:11623. doi: 10.1038/ncomms11623.
8
Spin colossal magnetoresistance in an antiferromagnetic insulator.
Nat Mater. 2018 Jul;17(7):577-580. doi: 10.1038/s41563-018-0087-4. Epub 2018 May 28.
9
Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks.
Phys Rev Lett. 2012 Jan 6;108(1):017201. doi: 10.1103/PhysRevLett.108.017201. Epub 2012 Jan 3.
10
Magnetoresistance in Hybrid Pt/CoFeO Bilayers Controlled by Competing Spin Accumulation and Interfacial Chemical Reconstruction.
ACS Appl Mater Interfaces. 2018 Apr 11;10(14):12031-12041. doi: 10.1021/acsami.8b00384. Epub 2018 Mar 30.

引用本文的文献

1
Antiferromagnetic spintronics: An overview and outlook.
Fundam Res. 2022 Apr 8;2(4):522-534. doi: 10.1016/j.fmre.2022.03.016. eCollection 2022 Jul.
3
Tunable high-temperature itinerant antiferromagnetism in a van der Waals magnet.
Nat Commun. 2021 May 14;12(1):2844. doi: 10.1038/s41467-021-23122-y.
4
Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet SrIrO.
Nat Commun. 2019 May 23;10(1):2280. doi: 10.1038/s41467-019-10299-6.

本文引用的文献

1
Antiferromagnetic spintronics.
Nat Nanotechnol. 2016 Mar;11(3):231-41. doi: 10.1038/nnano.2016.18.
2
Electrical switching of an antiferromagnet.
Science. 2016 Feb 5;351(6273):587-90. doi: 10.1126/science.aab1031. Epub 2016 Jan 14.
3
Relativistic Néel-order fields induced by electrical current in antiferromagnets.
Phys Rev Lett. 2014 Oct 10;113(15):157201. doi: 10.1103/PhysRevLett.113.157201. Epub 2014 Oct 6.
4
Anisotropic magnetoresistance in an antiferromagnetic semiconductor.
Nat Commun. 2014 Sep 10;5:4671. doi: 10.1038/ncomms5671.
5
Room-temperature antiferromagnetic memory resistor.
Nat Mater. 2014 Apr;13(4):367-74. doi: 10.1038/nmat3861. Epub 2014 Jan 26.
6
Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks.
Phys Rev Lett. 2012 Jan 6;108(1):017201. doi: 10.1103/PhysRevLett.108.017201. Epub 2012 Jan 3.
7
Antiferromagnetic metal spintronics.
Philos Trans A Math Phys Eng Sci. 2011 Aug 13;369(1948):3098-114. doi: 10.1098/rsta.2011.0014.
8
A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction.
Nat Mater. 2011 May;10(5):347-51. doi: 10.1038/nmat2983. Epub 2011 Mar 13.
9
Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.
Nature. 2004 Jun 24;429(6994):850-3. doi: 10.1038/nature02659.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验