Galceran R, Fina I, Cisneros-Fernández J, Bozzo B, Frontera C, López-Mir L, Deniz H, Park K-W, Park B-G, Balcells Ll, Martí X, Jungwirth T, Martínez B
Institut de Ciència de Materials de Barcelona (CSIC), Campus de Bellaterra, 08193 Bellaterra, Spain.
Unité Mixte de Physique, CNRS, Thales, Université Paris-Sud, Université Paris-Saclay, Palaiseau 91767, France.
Sci Rep. 2016 Oct 20;6:35471. doi: 10.1038/srep35471.
Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.
反铁磁自旋电子学是一个新兴领域;反铁磁体可以提高铁磁体的功能,具有更高的响应时间,并能使信息免受外部磁场干扰。此外,还存在大量奈尔温度高于室温的反铁磁半导体和金属。在本论文中,我们致力于探索具有非常大的自旋轨道耦合的反铁磁材料中各向异性磁电阻能有多大的极限。我们选择IrMn作为一流磁矩(Mn)和自旋轨道(Ir)组合的典型例子。对反铁磁金属(IrMn)/铁磁绝缘体薄膜双层进行了等温磁输运测量。两层之间具有磁耦合的金属/绝缘体结构使得能够专门测量反铁磁层中输运性质的调制。发现各向异性磁电阻高达0.15%,这比裸露的IrMn层要大得多。有趣的是,已经观察到各向异性磁电阻受到场冷条件的强烈影响,这表明所发现的响应依赖于在磁有序温度下畴的形成。