Suppr超能文献

二吡啶酸类似物抑制金属β-内酰胺酶的研究。

Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo-β-Lactamases.

机构信息

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.

Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, University of Texas Austin, Austin, TX, 78712, USA.

出版信息

ChemMedChem. 2019 Jul 3;14(13):1271-1282. doi: 10.1002/cmdc.201900172. Epub 2019 May 24.

Abstract

New Delhi metallo-β-lactamase-1 (NDM-1) poses an immediate threat to our most effective and widely prescribed drugs, the β-lactam-containing class of antibiotics. There are no clinically relevant inhibitors to combat NDM-1, despite significant efforts toward their development. Inhibitors that use a carboxylic acid motif for binding the Zn ions in the active site of NDM-1 make up a large portion of the >500 inhibitors reported to date. New and structurally diverse scaffolds for inhibitor development are needed urgently. Herein we report the isosteric replacement of one carboxylate group of dipicolinic acid (DPA) to obtain DPA isosteres with good inhibitory activity against NDM-1 (and related metallo-β-lactamases, IMP-1 and VIM-2). It was determined that the choice of carboxylate isostere influences both the potency of NDM-1 inhibition and the mechanism of action. Additionally, we show that an isostere with a metal-stripping mechanism can be re-engineered into an inhibitor that favors ternary complex formation. This work provides a roadmap for future isosteric replacement of routinely used metal binding motifs (i.e., carboxylic acids) for the generation of new entities in NDM-1 inhibitor design and development.

摘要

新德里金属-β-内酰胺酶 1(NDM-1)对我们最有效和广泛使用的β-内酰胺类抗生素构成了直接威胁。尽管在开发方面做出了巨大努力,但仍没有针对 NDM-1 的临床相关抑制剂。用于结合 NDM-1 活性部位 Zn 离子的羧酸基 motif 的抑制剂构成了迄今为止报道的超过 500 种抑制剂的大部分。迫切需要用于抑制剂开发的新的和结构多样化的支架。在此,我们报告了二吡啶甲酸(DPA)的一个羧酸盐基团的等排体替换,以获得对 NDM-1(和相关的金属-β-内酰胺酶,IMP-1 和 VIM-2)具有良好抑制活性的 DPA 等排体。结果表明,羧酸盐等排体的选择会影响 NDM-1 抑制的效力和作用机制。此外,我们还表明,可以对具有脱金属作用机制的等排体进行重新设计,使其有利于三元复合物的形成。这项工作为 NDM-1 抑制剂设计和开发中的新型实体的生成提供了常规金属结合基序(即羧酸)的未来等排体替换的路线图。

相似文献

1
Investigation of Dipicolinic Acid Isosteres for the Inhibition of Metallo-β-Lactamases.
ChemMedChem. 2019 Jul 3;14(13):1271-1282. doi: 10.1002/cmdc.201900172. Epub 2019 May 24.
2
Probing the mechanisms of inhibition for various inhibitors of metallo-β-lactamases VIM-2 and NDM-1.
J Inorg Biochem. 2020 Sep;210:111123. doi: 10.1016/j.jinorgbio.2020.111123. Epub 2020 Jun 15.
3
Dipicolinic Acid Derivatives as Inhibitors of New Delhi Metallo-β-lactamase-1.
J Med Chem. 2017 Sep 14;60(17):7267-7283. doi: 10.1021/acs.jmedchem.7b00407. Epub 2017 Aug 30.
4
Recent research and development of NDM-1 inhibitors.
Eur J Med Chem. 2021 Nov 5;223:113667. doi: 10.1016/j.ejmech.2021.113667. Epub 2021 Jun 24.
5
Probing the Interaction of Aspergillomarasmine A with Metallo-β-lactamases NDM-1, VIM-2, and IMP-7.
ACS Infect Dis. 2018 Feb 9;4(2):135-145. doi: 10.1021/acsinfecdis.7b00106. Epub 2017 Nov 9.
6
Design of dipicolinic acid derivatives as New Delhi metallo-β-lactamase-1 inhibitors using a combined computational approach.
J Biomol Struct Dyn. 2020 Jul;38(11):3384-3395. doi: 10.1080/07391102.2019.1663262. Epub 2019 Sep 24.
7
Synthesis and Preclinical Evaluation of TPA-Based Zinc Chelators as Metallo-β-lactamase Inhibitors.
ACS Infect Dis. 2018 Sep 14;4(9):1407-1422. doi: 10.1021/acsinfecdis.8b00137. Epub 2018 Aug 2.
9
Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding.
Eur J Med Chem. 2017 Jul 28;135:159-173. doi: 10.1016/j.ejmech.2017.04.035. Epub 2017 Apr 14.
10
Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-β-lactamase Inhibitor Development.
ChemMedChem. 2020 Jul 20;15(14):1272-1282. doi: 10.1002/cmdc.202000123. Epub 2020 May 7.

引用本文的文献

1
Approachable Synthetic Methodologies for Second-Generation -Lactamase Inhibitors: A Review.
Pharmaceuticals (Basel). 2024 Aug 23;17(9):1108. doi: 10.3390/ph17091108.
2
Machine Learning Models Identify Inhibitors of New Delhi Metallo-β-lactamase.
J Chem Inf Model. 2024 May 27;64(10):3977-3991. doi: 10.1021/acs.jcim.3c02015. Epub 2024 May 10.
3
Elucidation of critical chemical moieties of metallo-β-lactamase inhibitors and prioritisation of target metallo-β-lactamases.
J Enzyme Inhib Med Chem. 2024 Dec;39(1):2318830. doi: 10.1080/14756366.2024.2318830. Epub 2024 Mar 15.
4
Recent Advances in the Development of Semisynthetic Glycopeptide Antibiotics: 2014-2022.
ACS Infect Dis. 2022 Aug 12;8(8):1381-1407. doi: 10.1021/acsinfecdis.2c00253. Epub 2022 Jul 27.
5
Metallo-β-lactamases in the Age of Multidrug Resistance: From Structure and Mechanism to Evolution, Dissemination, and Inhibitor Design.
Chem Rev. 2021 Jul 14;121(13):7957-8094. doi: 10.1021/acs.chemrev.1c00138. Epub 2021 Jun 15.
7
Visualizing the Dynamic Metalation State of New Delhi Metallo-β-lactamase-1 in Bacteria Using a Reversible Fluorescent Probe.
J Am Chem Soc. 2021 Jun 9;143(22):8314-8323. doi: 10.1021/jacs.1c00290. Epub 2021 May 26.
8
Spectroscopic and biochemical characterization of metallo-β-lactamase IMP-1 with dicarboxylic, sulfonyl, and thiol inhibitors.
Bioorg Med Chem. 2021 Jun 15;40:116183. doi: 10.1016/j.bmc.2021.116183. Epub 2021 May 1.
9
Identification of Adenosine Deaminase Inhibitors by Metal-binding Pharmacophore Screening.
ChemMedChem. 2020 Nov 18;15(22):2151-2156. doi: 10.1002/cmdc.202000271. Epub 2020 Oct 14.
10
Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-β-lactamase Inhibitor Development.
ChemMedChem. 2020 Jul 20;15(14):1272-1282. doi: 10.1002/cmdc.202000123. Epub 2020 May 7.

本文引用的文献

1
A close look onto structural models and primary ligands of metallo-β-lactamases.
Drug Resist Updat. 2018 Sep;40:1-12. doi: 10.1016/j.drup.2018.08.001. Epub 2018 Aug 25.
2
Ten Years with New Delhi Metallo-β-lactamase-1 (NDM-1): From Structural Insights to Inhibitor Design.
ACS Infect Dis. 2019 Jan 11;5(1):9-34. doi: 10.1021/acsinfecdis.8b00247. Epub 2018 Nov 28.
4
Targeting Metalloenzymes for Therapeutic Intervention.
Chem Rev. 2019 Jan 23;119(2):1323-1455. doi: 10.1021/acs.chemrev.8b00201. Epub 2018 Sep 7.
5
Virtual Screening and Experimental Testing of B1 Metallo-β-lactamase Inhibitors.
J Chem Inf Model. 2018 Sep 24;58(9):1902-1914. doi: 10.1021/acs.jcim.8b00133. Epub 2018 Aug 29.
6
Metal-Binding Isosteres as New Scaffolds for Metalloenzyme Inhibitors.
Inorg Chem. 2018 Aug 6;57(15):9538-9543. doi: 10.1021/acs.inorgchem.8b01632. Epub 2018 Jul 16.
7
Isosteres of hydroxypyridinethione as drug-like pharmacophores for metalloenzyme inhibition.
J Biol Inorg Chem. 2018 Oct;23(7):1129-1138. doi: 10.1007/s00775-018-1593-1. Epub 2018 Jul 12.
8
blaNDM-21, a new variant of blaNDM in an Escherichia coli clinical isolate carrying blaCTX-M-55 and rmtB.
J Antimicrob Chemother. 2018 Sep 1;73(9):2336-2339. doi: 10.1093/jac/dky226.
9
10
The Continuing Challenge of Metallo-β-Lactamase Inhibition: Mechanism Matters.
Trends Pharmacol Sci. 2018 Jul;39(7):635-647. doi: 10.1016/j.tips.2018.03.007. Epub 2018 Apr 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验