Academy of Scientific and Innovative Research (AcSIR) , Anusandhan Bhawan , New Delhi 110025 , India.
J Med Chem. 2019 Jun 13;62(11):5655-5671. doi: 10.1021/acs.jmedchem.9b00628. Epub 2019 May 24.
In our efforts to identify novel chemical scaffolds for the development of antileishmanial agents, a series of quinoline-metronidazole hybrid compounds was synthesized and tested against the murine model of visceral leishmaniasis. Among all synthesized derivatives, 15b and 15i showed significant antileishmanial efficacy against both extracellular promastigote (IC 9.54 and 5.42 μM, respectively) and intracellular amastigote (IC 9.81 and 3.75 μM, respectively) forms of Leishmania donovani with negligible cytotoxicity toward the host (J774 macrophages, Vero cells). However, compound 15i effectively inhibited the parasite burden in the liver and spleen (>80%) of infected BALB/c mice. Mechanistic studies revealed that 15i triggers oxidative stress which induces bioenergetic collapse and apoptosis of the parasite by decreasing ATP production and mitochondrial membrane potential. Structure-activity analyses and pharmacokinetic studies suggest 15i as a promising antileishmanial lead and emphasize the importance of quinoline-metronidazole series as a suitable platform for the future development of antileishmanial agents.
在我们努力寻找新型化学骨架以开发抗利什曼原虫药物的过程中,我们合成了一系列喹啉-甲硝唑杂合化合物,并对内脏利什曼病的小鼠模型进行了测试。在所合成的衍生物中,化合物 15b 和 15i 对利什曼原虫的体外前鞭毛体(IC 9.54 和 5.42 μM)和体内无鞭毛体(IC 9.81 和 3.75 μM)均表现出显著的抗利什曼原虫活性,且对宿主(J774 巨噬细胞、Vero 细胞)的细胞毒性可忽略不计。然而,化合物 15i 能有效抑制感染 BALB/c 小鼠肝脏和脾脏中的寄生虫负荷(>80%)。机制研究表明,15i 触发氧化应激,通过降低 ATP 产生和线粒体膜电位,诱导寄生虫的生物能量崩溃和凋亡。构效关系分析和药代动力学研究表明,15i 具有成为有前途的抗利什曼原虫先导化合物的潜力,并强调了喹啉-甲硝唑系列作为未来开发抗利什曼原虫药物的合适平台的重要性。