Department of Architecture and Regional Planning, Indian Institute of Technology Kharagpur, 721302, India.
Center for the Study of Regional Development (CSRD), Jawaharlal Nehru University, New Delhi, 110067, India.
J Environ Manage. 2019 Aug 15;244:208-227. doi: 10.1016/j.jenvman.2019.04.095. Epub 2019 May 22.
Ecosystem Services (ESs) refer to the direct and indirect contributions of ecosystems to human well-being and subsistence. Ecosystem valuation is an approach to assign monetary values to an ecosystem and its key ecosystem goods and services, generally referred to as Ecosystem Service Value (ESV). We have measured spatiotemporal ESV of 17 key ESs of Sundarbans Biosphere Reserve (SBR) in India using temporal remote sensing (RS) data (for years 1973, 1988, 2003, 2013, and 2018). These mangrove ecosystems are crucial for providing valuable supporting, regulatory, provisioning, and cultural ecosystem services. We have adopted supervised machine learning algorithms for classifying the region into different ecosystem units. Among the used machine learning models, Support Vector Machine (SVM) and Random Forest (RF) algorithms performed the most accurate and produced the best classification estimates with maximum kappa and an overall accuracy value. The maximum ESV (derived from both adjusted and non-adjusted units, million US$ year) is produced by mangrove forest, followed by the coastal estuary, cropland, inland wetland, mixed vegetation, and finally urban land. Out of all the ESs, the waste treatment (WT) service is the dominant ecosystem service of SBR. Additionally, the mangrove ecosystem was found to be the most sensitive to land use and land cover changes. The synergy and trade-offs between the ESs are closely associated with the spatial extent. Therefore, accurate estimates of ES valuation and mapping can be a robust tool for assessing the effects of poor decision making and overexploitation of natural resources on ESs.
生态系统服务是指生态系统对人类福祉和生存的直接和间接贡献。生态系统估值是一种将货币价值赋予生态系统及其关键生态系统商品和服务的方法,通常称为生态系统服务价值(ESV)。我们使用时间遥感(RS)数据(1973 年、1988 年、2003 年、2013 年和 2018 年)测量了印度孙德尔本斯生物圈保护区(SBR)的 17 种关键生态系统服务的时空生态系统服务价值(ESV)。这些红树林生态系统对于提供有价值的支持、调节、供应和文化生态系统服务至关重要。我们采用了有监督的机器学习算法将该区域划分为不同的生态系统单元。在所使用的机器学习模型中,支持向量机(SVM)和随机森林(RF)算法的分类最准确,最大kappa 和整体准确性值最高。最大的生态系统服务价值(源自调整和未调整的单位,百万美元/年)是由红树林产生的,其次是沿海河口、耕地、内陆湿地、混合植被,最后是城市土地。在所有生态系统服务中,废物处理(WT)服务是 SBR 的主要生态系统服务。此外,红树林生态系统对土地利用和土地覆盖变化最为敏感。生态系统服务之间的协同作用和权衡关系与空间范围密切相关。因此,准确估计生态系统价值和制图可以成为评估不良决策和过度开发自然资源对生态系统影响的有力工具。