一种用于人类情感识别的无监督 EEG 解码系统。
An unsupervised EEG decoding system for human emotion recognition.
机构信息
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan; School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan.
出版信息
Neural Netw. 2019 Aug;116:257-268. doi: 10.1016/j.neunet.2019.04.003. Epub 2019 Apr 25.
Emotion plays a vital role in human health and many aspects of life, including relationships, behaviors and decision-making. An intelligent emotion recognition system may provide a flexible method to monitor emotion changes in daily life and send warning information when unusual/unhealthy emotional states occur. Here, we proposed a novel unsupervised learning-based emotion recognition system in an attempt to decode emotional states from electroencephalography (EEG) signals. Four dimensions of human emotions were examined: arousal, valence, dominance and liking. To better characterize the trials in terms of EEG features, we used hypergraph theory. Emotion recognition was realized through hypergraph partitioning, which divided the EEG-based hypergraph into a specific number of clusters, with each cluster indicating one of the emotion classes and vertices (trials) in the same cluster sharing similar emotion properties. Comparison of the proposed unsupervised learning-based emotion recognition system with other recognition systems using a well-known public emotion database clearly demonstrated the validity of the proposed system.
情绪在人类健康和生活的许多方面都起着至关重要的作用,包括人际关系、行为和决策。智能情绪识别系统可以提供一种灵活的方法来监测日常生活中的情绪变化,并在出现异常/不健康的情绪状态时发出警告信息。在这里,我们提出了一种新的基于无监督学习的情绪识别系统,试图从脑电图 (EEG) 信号中解码情绪状态。研究了人类情绪的四个维度:唤醒度、效价、主导性和喜欢度。为了更好地从 EEG 特征方面描述试验,我们使用了超图理论。通过超图划分实现了情绪识别,即将基于 EEG 的超图划分为特定数量的簇,每个簇表示一种情绪类别,同一簇中的顶点(试验)具有相似的情绪属性。使用知名的公共情绪数据库将基于无监督学习的情绪识别系统与其他识别系统进行比较,清楚地证明了所提出系统的有效性。