Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, United States.
Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, United States.
Neuroimage. 2022 Apr 1;249:118873. doi: 10.1016/j.neuroimage.2022.118873. Epub 2022 Jan 5.
This study applies adaptive mixture independent component analysis (AMICA) to learn a set of ICA models, each optimized by fitting a distributional model for each identified component process while maximizing component process independence within some subsets of time points of a multi-channel EEG dataset. Here, we applied 20-model AMICA decomposition to long-duration (1-2 h), high-density (128-channel) EEG data recorded while participants used guided imagination to imagine situations stimulating the experience of 15 specified emotions. These decompositions tended to return models identifying spatiotemporal EEG patterns or states within single emotion imagination periods. Model probability transitions reflected time-courses of EEG dynamics during emotion imagination, which varied across emotions. Transitions between models accounting for imagined "grief" and "happiness" were more abrupt and better aligned with participant reports, while transitions for imagined "contentment" extended into adjoining "relaxation" periods. The spatial distributions of brain-localizable independent component processes (ICs) were more similar within participants (across emotions) than emotions (across participants). Across participants, brain regions with differences in IC spatial distributions (i.e., dipole density) between emotion imagination versus relaxation were identified in or near the left rostrolateral prefrontal, posterior cingulate cortex, right insula, bilateral sensorimotor, premotor, and associative visual cortex. No difference in dipole density was found between positive versus negative emotions. AMICA models of changes in high-density EEG dynamics may allow data-driven insights into brain dynamics during emotional experience, possibly enabling the improved performance of EEG-based emotion decoding and advancing our understanding of emotion.
本研究应用自适应混合独立成分分析(AMICA)来学习一组 ICA 模型,每个模型通过拟合每个识别出的成分过程的分布模型进行优化,同时在多通道 EEG 数据集的某些时间点子集中最大化成分过程的独立性。在这里,我们应用了 20 模型 AMICA 分解,对参与者使用引导想象来想象刺激 15 种特定情绪体验的情况时记录的长时程(1-2 小时)、高密度(128 通道)EEG 数据进行了分析。这些分解往往会返回在单个情绪想象期间识别时空 EEG 模式或状态的模型。模型概率转换反映了情绪想象过程中 EEG 动力学的时间过程,这些过程因情绪而异。用于想象“悲伤”和“幸福”的模型转换更加突然,与参与者的报告更加一致,而用于想象“满足”的模型转换则延伸到相邻的“放松”时期。在参与者内部(跨越情绪),可识别的独立成分过程(ICs)的空间分布比情绪(跨越参与者)更相似。在参与者之间,在情绪想象与放松之间,IC 空间分布(即偶极密度)存在差异的大脑区域被确定在或靠近左侧额外侧前额叶、后扣带回皮质、右侧岛叶、双侧感觉运动、运动前和联合视觉皮层。在正性情绪与负性情绪之间,偶极密度没有差异。高密度 EEG 动力学变化的 AMICA 模型可能允许对情绪体验过程中的大脑动力学进行数据驱动的洞察,从而可能提高基于 EEG 的情绪解码的性能,并推进我们对情绪的理解。