Department of Cellular Biology and Anatomy.
Vascular Biology Center.
J Am Soc Nephrol. 2019 Jul;30(7):1174-1191. doi: 10.1681/ASN.2018111117. Epub 2019 May 24.
Mitochondria are dynamic organelles that undergo fission and fusion. During cell stress, mitochondrial dynamics shift to fission, leading to mitochondrial fragmentation, membrane leakage, and apoptosis. Mitochondrial fragmentation requires the cleavage of both outer and inner membranes, but the mechanism of inner membrane cleavage is unclear. Bif-1 and prohibitin-2 may regulate mitochondrial dynamics.
We used azide-induced ATP depletion to incite cell stress in mouse embryonic fibroblasts and renal proximal tubular cells, and renal ischemia-reperfusion to induce stress in mice. We also used knockout cells and mice to determine the role of Bif-1, and used multiple techniques to analyze the molecular interaction between Bif-1 and prohibitin-2.
Upon cell stress, Bif-1 translocated to mitochondria to bind prohibitin-2, resulting in the disruption of prohibitin complex and proteolytic inactivation of the inner membrane fusion protein OPA1. Bif-1-deficiency inhibited prohibitin complex disruption, OPA1 proteolysis, mitochondrial fragmentation, and apoptosis. Domain deletion analysis indicated that Bif-1 interacted with prohibitin-2 via its C-terminus. Notably, mutation of Bif-1 at its C-terminal tryptophan-344 not only prevented Bif-1/prohibitin-2 interaction but also reduced prohibitin complex disruption, OPA1 proteolysis, mitochondrial fragmentation, and apoptosis, supporting a pathogenic role of Bif-1/prohibitin-2 interaction. In mice, Bif-1 bound prohibitin-2 during renal ischemia/reperfusion injury, and Bif-1-deficiency protected against OPA1 proteolysis, mitochondrial fragmentation, apoptosis and kidney injury.
These findings suggest that during cell stress, Bif-1 regulates mitochondrial inner membrane by interacting with prohibitin-2 to disrupt prohibitin complexes and induce OPA1 proteolysis and inactivation.
线粒体是具有动态特征的细胞器,可发生裂变和融合。在细胞应激时,线粒体动力学向裂变转变,导致线粒体碎片化、膜通透性增加和细胞凋亡。线粒体碎片化需要内外膜的双重切割,但其内膜切割的机制尚不清楚。双功能蛋白 1(Bif-1)和抑素 2(prohibitin-2)可能调节线粒体动力学。
我们使用叠氮化物诱导的 ATP 耗竭来刺激小鼠胚胎成纤维细胞和肾近端小管细胞的细胞应激,以及使用肾缺血再灌注来诱导小鼠的应激。我们还使用敲除细胞和小鼠来确定 Bif-1 的作用,并使用多种技术来分析 Bif-1 与抑素 2 之间的分子相互作用。
在细胞应激时,Bif-1 易位到线粒体与抑素 2 结合,导致抑素复合物的破坏和内膜融合蛋白 OPA1 的蛋白水解失活。Bif-1 缺陷抑制了抑素复合物的破坏、OPA1 的蛋白水解、线粒体碎片化和细胞凋亡。结构域缺失分析表明,Bif-1 通过其 C 端与抑素 2 相互作用。值得注意的是,Bif-1 在其 C 端色氨酸 344 处的突变不仅阻止了 Bif-1/抑素 2 的相互作用,而且减少了抑素复合物的破坏、OPA1 的蛋白水解、线粒体碎片化和细胞凋亡,支持了 Bif-1/抑素 2 相互作用的致病性。在小鼠中,Bif-1 在肾缺血再灌注损伤期间与抑素 2 结合,Bif-1 缺陷可防止 OPA1 的蛋白水解、线粒体碎片化、细胞凋亡和肾损伤。
这些发现表明,在细胞应激时,Bif-1 通过与抑素 2 相互作用来调节线粒体内膜,破坏抑素复合物并诱导 OPA1 的蛋白水解和失活。