文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体质量控制在人类健康与疾病中的作用。

Mitochondrial quality control in human health and disease.

机构信息

Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.

Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China.

出版信息

Mil Med Res. 2024 May 29;11(1):32. doi: 10.1186/s40779-024-00536-5.


DOI:10.1186/s40779-024-00536-5
PMID:38812059
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11134732/
Abstract

Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.

摘要

线粒体是真核细胞中最重要的能量产生细胞器,在调节能量代谢中起着关键作用。然而,它们的重要性不仅于此,因为它们在细胞增殖、分化、免疫反应和氧化还原平衡等重要生命过程中也是不可或缺的。为了应对各种生理信号或外部刺激,一种复杂的线粒体质量控制(MQC)机制已经进化,其中包括线粒体生物发生、线粒体动力学和自噬等关键过程,这些过程已经引起了研究人员的越来越多的关注,以揭示其特定的分子机制。在这篇综述中,我们全面总结了 MQC 主要成分中涉及的关键调节剂的主要机制和功能。此外,还详细描述了 MQC 调节的关键生理功能及其在各种系统性疾病进展中的多种作用。我们还讨论了针对 MQC 的激动剂或拮抗剂,旨在通过增强 MQC 来稳定线粒体功能,探索潜在的治疗和研究前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/58bcd579f954/40779_2024_536_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/19f5d8ae9d39/40779_2024_536_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/b7b62826e379/40779_2024_536_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/4f5106e042b5/40779_2024_536_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/51aca94f72cc/40779_2024_536_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/1cb996e1202e/40779_2024_536_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/8ef41c297539/40779_2024_536_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/58bcd579f954/40779_2024_536_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/19f5d8ae9d39/40779_2024_536_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/b7b62826e379/40779_2024_536_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/4f5106e042b5/40779_2024_536_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/51aca94f72cc/40779_2024_536_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/1cb996e1202e/40779_2024_536_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/8ef41c297539/40779_2024_536_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9122/11134732/58bcd579f954/40779_2024_536_Fig7_HTML.jpg

相似文献

[1]
Mitochondrial quality control in human health and disease.

Mil Med Res. 2024-5-29

[2]
Mitochondrial Quality Control in the Maintenance of Cardiovascular Homeostasis: The Roles and Interregulation of UPS, Mitochondrial Dynamics and Mitophagy.

Oxid Med Cell Longev. 2021

[3]
Uncoupled turnover disrupts mitochondrial quality control in diabetic retinopathy.

JCI Insight. 2019-12-5

[4]
Mitochondrial quality control in stroke: From the mechanisms to therapeutic potentials.

J Cell Mol Med. 2022-2

[5]
Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials.

Pharmacol Res. 2020-6

[6]
Glucocorticoid impairs mitochondrial quality control in neurons.

Neurobiol Dis. 2021-5

[7]
The Role of Mitochondrial Quality Control in Chronic Obstructive Pulmonary Disease.

Lab Invest. 2024-2

[8]
Mitochondrial biogenesis: pharmacological approaches.

Curr Pharm Des. 2014

[9]
The role of FUNDC1 in mitophagy, mitochondrial dynamics and human diseases.

Biochem Pharmacol. 2022-3

[10]
Emerging role of transcription factor EB in mitochondrial quality control.

Biomed Pharmacother. 2020-8

引用本文的文献

[1]
Gut Microbiota-Derived Metabolites Orchestrate Metabolic Reprogramming in Diabetic Cardiomyopathy: Mechanisms and Therapeutic Frontiers.

FASEB J. 2025-9-15

[2]
Mitochondrial dysfunction in hepatocellular carcinoma: from metabolism to targeted therapies.

Mol Cell Biochem. 2025-8-30

[3]
Blueprint of Collapse: Precision Biomarkers, Molecular Cascades, and the Engineered Decline of Fast-Progressing ALS.

Int J Mol Sci. 2025-8-21

[4]
Mitochondrial Extracellular Vesicles: A Novel Approach to Mitochondrial Quality Control.

Biomolecules. 2025-8-8

[5]
Mitochondrial Quality Control in Health and Disease.

MedComm (2020). 2025-8-15

[6]
Levosimendan alleviates myocardial ischemia-reperfusion injury by regulating mitochondrial autophagy through cGAS-STING signaling pathway.

J Clin Biochem Nutr. 2025-7

[7]
Arylsulfatase K attenuates airway epithelial cell senescence in COPD by regulating parkin-mediated mitophagy.

Redox Biol. 2025-7-31

[8]
Mitophagy's impacts on cancer and neurodegenerative diseases: implications for future therapies.

J Hematol Oncol. 2025-8-1

[9]
Targeting ferroptosis in spinal cord injury through stem cell therapy: mechanisms and therapeutic prospects.

Front Neurosci. 2025-6-25

[10]
Harnessing Antioxidants in Cancer Therapy: Opportunities, Challenges, and Future Directions.

Antioxidants (Basel). 2025-5-31

本文引用的文献

[1]
Intraneuronal β-amyloid impaired mitochondrial proteostasis through the impact on LONP1.

Proc Natl Acad Sci U S A. 2023-12-19

[2]
Ncoa2 Promotes CD8+ T cell-Mediated Antitumor Immunity by Stimulating T-cell Activation via Upregulation of PGC-1α Critical for Mitochondrial Function.

Cancer Immunol Res. 2023-10-4

[3]
The Role of Mitochondrial Dynamics and Mitotic Fission in Regulating the Cell Cycle in Cancer and Pulmonary Arterial Hypertension: .

Cells. 2023-7-20

[4]
Pretreatment with Kahweol Attenuates Sepsis-Induced Acute Lung Injury via Improving Mitochondrial Homeostasis in a CaMKKII/AMPK-Dependent Pathway.

Mol Nutr Food Res. 2023-10

[5]
Pathophysiology of obesity and its associated diseases.

Acta Pharm Sin B. 2023-6

[6]
Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviates atherosclerosis through the modulation of M1 polarization.

J Transl Med. 2023-6-30

[7]
Sarcopenic obesity: emerging mechanisms and therapeutic potential.

Metabolism. 2023-9

[8]
DRP1 knockdown and atorvastatin alleviate ox-LDL-induced vascular endothelial cells injury: DRP1 is a potential target for preventing atherosclerosis.

Exp Cell Res. 2023-8-15

[9]
HDAC3 deficiency protects against acute lung injury by maintaining epithelial barrier integrity through preserving mitochondrial quality control.

Redox Biol. 2023-7

[10]
Mitophagy restricts BAX/BAK-independent, Parkin-mediated apoptosis.

Sci Adv. 2023-5-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索