Suppr超能文献

基因组在经验依赖性可塑性中的作用:扩展基因组动作电位的类比。

The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential.

机构信息

Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada;

School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23252-23260. doi: 10.1073/pnas.1820837116. Epub 2019 May 24.

Abstract

Our past experiences shape our current and future behavior. These experiences must leave some enduring imprint on our brains, altering neural circuits that mediate behavior and contributing to our individual differences. As a framework for understanding how experiences might produce lasting changes in neural circuits, Clayton [D. F. Clayton, 74, 185-216 (2000)] introduced the concept of the genomic action potential (gAP)-a structured genomic response in the brain to acute experience. Similar to the familiar electrophysiological action potential (eAP), the gAP also provides a means for integrating afferent patterns of activity but on a slower timescale and with longer-lasting effects. We revisit this concept in light of contemporary work on experience-dependent modification of neural circuits. We review the "Immediate Early Gene" (IEG) response, the starting point for understanding the gAP. We discuss evidence for its involvement in the encoding of experience to long-term memory across time and biological levels of organization ranging from individual cells to cell ensembles and whole organisms. We explore distinctions between memory encoding and homeostatic functions and consider the potential for perpetuation of the imprint of experience through epigenetic mechanisms. We describe a specific example of a gAP in humans linked to individual differences in the response to stress. Finally, we identify key objectives and new tools for continuing research in this area.

摘要

我们的过往经历塑造了当前和未来的行为。这些经历必定会在我们的大脑中留下持久的印记,改变介导行为的神经回路,并促成我们个体之间的差异。为了理解经历如何在神经回路中产生持久的变化,克莱顿(Clayton)[D. F. Clayton,74,185-216(2000)]提出了基因组动作电位(gAP)的概念——大脑对急性经历的一种结构化的基因组反应。类似于熟悉的电生理动作电位(eAP),gAP 也提供了一种整合传入活动模式的方法,但在较慢的时间尺度上,并具有更长的持续效果。我们根据关于依赖经验的神经回路修饰的当代研究重新审视了这一概念。我们回顾了“即时早期基因”(IEG)反应,这是理解 gAP 的起点。我们讨论了它在从单个细胞到细胞集合和整个生物体等不同生物组织水平上,对跨时间和长期记忆的经验编码的证据。我们探讨了记忆编码和动态平衡功能之间的区别,并考虑了通过表观遗传机制延续经验印记的可能性。我们描述了一个与人类对压力反应的个体差异相关的 gAP 的具体示例。最后,我们确定了继续该领域研究的关键目标和新工具。

相似文献

1
The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23252-23260. doi: 10.1073/pnas.1820837116. Epub 2019 May 24.
2
Epigenetics of memory and plasticity.
Prog Mol Biol Transl Sci. 2014;122:305-40. doi: 10.1016/B978-0-12-420170-5.00011-8.
3
Neural plasticity and behavior - sixty years of conceptual advances.
J Neurochem. 2016 Oct;139 Suppl 2:179-199. doi: 10.1111/jnc.13580. Epub 2016 Mar 10.
4
The genomic action potential.
Neurobiol Learn Mem. 2000 Nov;74(3):185-216. doi: 10.1006/nlme.2000.3967.
5
The transcription factor Zif268/Egr1, brain plasticity, and memory.
Prog Mol Biol Transl Sci. 2014;122:89-129. doi: 10.1016/B978-0-12-420170-5.00004-0.
6
Using immediate-early genes to map hippocampal subregional functions.
Learn Mem. 2007 Nov 14;14(11):758-70. doi: 10.1101/lm.698107. Print 2007 Nov.
7
Activity-dependent neural plasticity from bench to bedside.
Neuron. 2013 Oct 30;80(3):729-41. doi: 10.1016/j.neuron.2013.10.028.
8
Cooperation of Genomic and Rapid Nongenomic Actions of Estrogens in Synaptic Plasticity.
Mol Neurobiol. 2017 Aug;54(6):4113-4126. doi: 10.1007/s12035-016-9979-y. Epub 2016 Jun 20.
9
Single-cell memory trace imaging with immediate-early genes.
J Neurosci Methods. 2019 Oct 1;326:108368. doi: 10.1016/j.jneumeth.2019.108368. Epub 2019 Jul 26.

引用本文的文献

1
Integrating computer vision and molecular neurobiology to bridge the gap between behavior and the brain.
Curr Opin Insect Sci. 2024 Dec;66:101259. doi: 10.1016/j.cois.2024.101259. Epub 2024 Sep 5.
4
Parental developmental experience affects vocal learning in offspring.
Sci Rep. 2024 Jun 14;14(1):13787. doi: 10.1038/s41598-024-64520-8.
5
Characterization of transcriptional profiles associated with stress-induced neuronal activation in Arc-GFP mice.
Mol Psychiatry. 2024 Oct;29(10):3010-3023. doi: 10.1038/s41380-024-02555-z. Epub 2024 Apr 22.
6
Neurogenomic landscape associated with status-dependent cooperative behaviour.
Mol Ecol. 2024 Mar 21:e17327. doi: 10.1111/mec.17327.
7
Biphasic Npas4 expression promotes inhibitory plasticity and suppression of fear memory consolidation in mice.
Mol Psychiatry. 2024 Jul;29(7):1929-1940. doi: 10.1038/s41380-024-02454-3. Epub 2024 Feb 13.
10
Neural activity patterns differ between learning contexts in a social fish.
Proc Biol Sci. 2022 May 11;289(1974):20220135. doi: 10.1098/rspb.2022.0135. Epub 2022 May 4.

本文引用的文献

1
A Neuron-Optimized CRISPR/dCas9 Activation System for Robust and Specific Gene Regulation.
eNeuro. 2019 Mar 7;6(1). doi: 10.1523/ENEURO.0495-18.2019. eCollection 2019 Jan-Feb.
2
Social status alters chromatin accessibility and the gene regulatory response to glucocorticoid stimulation in rhesus macaques.
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1219-1228. doi: 10.1073/pnas.1811758115. Epub 2018 Dec 11.
3
Silent Learning.
Curr Biol. 2018 Nov 5;28(21):3508-3515.e5. doi: 10.1016/j.cub.2018.09.012. Epub 2018 Oct 25.
4
Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior.
Neuron. 2018 Oct 24;100(2):330-348. doi: 10.1016/j.neuron.2018.10.013.
5
Single-Cell RNA-Seq Uncovers a Robust Transcriptional Response to Morphine by Glia.
Cell Rep. 2018 Sep 25;24(13):3619-3629.e4. doi: 10.1016/j.celrep.2018.08.080.
6
Reduced levels of miRNAs 449 and 34 in sperm of mice and men exposed to early life stress.
Transl Psychiatry. 2018 May 23;8(1):101. doi: 10.1038/s41398-018-0146-2.
7
Memory Allocation: Mechanisms and Function.
Annu Rev Neurosci. 2018 Jul 8;41:389-413. doi: 10.1146/annurev-neuro-080317-061956. Epub 2018 Apr 25.
8
Different Neuronal Activity Patterns Induce Different Gene Expression Programs.
Neuron. 2018 May 2;98(3):530-546.e11. doi: 10.1016/j.neuron.2018.04.001. Epub 2018 Apr 19.
9
Understanding the Molecular Mechanisms Underpinning Gene by Environment Interactions in Psychiatric Disorders: The FKBP5 Model.
Biol Psychiatry. 2018 May 15;83(10):821-830. doi: 10.1016/j.biopsych.2018.01.021. Epub 2018 Mar 21.
10
Genetic signatures of memories.
Elife. 2018 Mar 21;7:e36064. doi: 10.7554/eLife.36064.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验