Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada;
School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Sep 22;117(38):23252-23260. doi: 10.1073/pnas.1820837116. Epub 2019 May 24.
Our past experiences shape our current and future behavior. These experiences must leave some enduring imprint on our brains, altering neural circuits that mediate behavior and contributing to our individual differences. As a framework for understanding how experiences might produce lasting changes in neural circuits, Clayton [D. F. Clayton, 74, 185-216 (2000)] introduced the concept of the genomic action potential (gAP)-a structured genomic response in the brain to acute experience. Similar to the familiar electrophysiological action potential (eAP), the gAP also provides a means for integrating afferent patterns of activity but on a slower timescale and with longer-lasting effects. We revisit this concept in light of contemporary work on experience-dependent modification of neural circuits. We review the "Immediate Early Gene" (IEG) response, the starting point for understanding the gAP. We discuss evidence for its involvement in the encoding of experience to long-term memory across time and biological levels of organization ranging from individual cells to cell ensembles and whole organisms. We explore distinctions between memory encoding and homeostatic functions and consider the potential for perpetuation of the imprint of experience through epigenetic mechanisms. We describe a specific example of a gAP in humans linked to individual differences in the response to stress. Finally, we identify key objectives and new tools for continuing research in this area.
我们的过往经历塑造了当前和未来的行为。这些经历必定会在我们的大脑中留下持久的印记,改变介导行为的神经回路,并促成我们个体之间的差异。为了理解经历如何在神经回路中产生持久的变化,克莱顿(Clayton)[D. F. Clayton,74,185-216(2000)]提出了基因组动作电位(gAP)的概念——大脑对急性经历的一种结构化的基因组反应。类似于熟悉的电生理动作电位(eAP),gAP 也提供了一种整合传入活动模式的方法,但在较慢的时间尺度上,并具有更长的持续效果。我们根据关于依赖经验的神经回路修饰的当代研究重新审视了这一概念。我们回顾了“即时早期基因”(IEG)反应,这是理解 gAP 的起点。我们讨论了它在从单个细胞到细胞集合和整个生物体等不同生物组织水平上,对跨时间和长期记忆的经验编码的证据。我们探讨了记忆编码和动态平衡功能之间的区别,并考虑了通过表观遗传机制延续经验印记的可能性。我们描述了一个与人类对压力反应的个体差异相关的 gAP 的具体示例。最后,我们确定了继续该领域研究的关键目标和新工具。