Gao Yipeng, Zhang Yongfeng, Schwen Daniel, Jiang Chao, Gan Jian
Idaho National Laboratory (INL), Idaho Falls, ID 83415, USA.
Sci Rep. 2019 May 24;9(1):7835. doi: 10.1038/s41598-019-44303-2.
Ordering and self-organization are critical in determining the dynamics of reaction-diffusion systems. Here we show a unique pattern formation mechanism, dictated by the coupling of thermodynamic instability and kinetic anisotropy. Intrinsically different from the physical origin of Turing instability and patterning, the ordered patterns we obtained are caused by the interplay of the instability from uphill diffusion, the symmetry breaking from anisotropic diffusion, and the reactions. To understand the formation of the void/gas bubble superlattices in crystals under irradiation, we establish a general theoretical framework to predict the symmetry selection of superlattice structures associated with anisotropic diffusion. Through analytical study and phase field simulations, we found that the symmetry of a superlattice is determined by the coupling of diffusion anisotropy and the reaction rate, which indicates a new type of bifurcation phenomenon. Our discovery suggests a means for designing target experiments to tailor different microstructural patterns.
排序和自组织在决定反应扩散系统的动力学方面至关重要。在此我们展示了一种独特的图案形成机制,该机制由热力学不稳定性和动力学各向异性的耦合所决定。我们所获得的有序图案与图灵不稳定性和图案形成的物理起源本质上不同,它们是由上坡扩散的不稳定性、各向异性扩散导致的对称性破缺以及反应之间的相互作用所引起的。为了理解晶体在辐照下形成的空位/气泡超晶格,我们建立了一个通用理论框架来预测与各向异性扩散相关的超晶格结构的对称性选择。通过分析研究和相场模拟,我们发现超晶格的对称性由扩散各向异性和反应速率的耦合所决定,这表明了一种新型的分岔现象。我们的发现为设计目标实验以定制不同的微观结构图案提供了一种方法。