Suppr超能文献

定制化图灵系统。

Bespoke Turing Systems.

机构信息

Cardiff School of Mathematics, Cardiff University, Senghennydd Road, Cardiff, CF24 4AG, UK.

Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, UK.

出版信息

Bull Math Biol. 2021 Mar 19;83(5):41. doi: 10.1007/s11538-021-00870-y.

Abstract

Reaction-diffusion systems are an intensively studied form of partial differential equation, frequently used to produce spatially heterogeneous patterned states from homogeneous symmetry breaking via the Turing instability. Although there are many prototypical "Turing systems" available, determining their parameters, functional forms, and general appropriateness for a given application is often difficult. Here, we consider the reverse problem. Namely, suppose we know the parameter region associated with the reaction kinetics in which patterning is required-we present a constructive framework for identifying systems that will exhibit the Turing instability within this region, whilst in addition often allowing selection of desired patterning features, such as spots, or stripes. In particular, we show how to build a system of two populations governed by polynomial morphogen kinetics such that the: patterning parameter domain (in any spatial dimension), morphogen phases (in any spatial dimension), and even type of resulting pattern (in up to two spatial dimensions) can all be determined. Finally, by employing spatial and temporal heterogeneity, we demonstrate that mixed mode patterns (spots, stripes, and complex prepatterns) are also possible, allowing one to build arbitrarily complicated patterning landscapes. Such a framework can be employed pedagogically, or in a variety of contemporary applications in designing synthetic chemical and biological patterning systems. We also discuss the implications that this freedom of design has on using reaction-diffusion systems in biological modelling and suggest that stronger constraints are needed when linking theory and experiment, as many simple patterns can be easily generated given freedom to choose reaction kinetics.

摘要

反应扩散系统是一类被广泛研究的偏微分方程形式,常用于通过图灵不稳定性从均匀对称破缺中产生空间异质的图案状态。尽管有许多典型的“图灵系统”可用,但确定它们的参数、函数形式以及对于给定应用的一般适用性通常是困难的。在这里,我们考虑相反的问题。也就是说,假设我们知道与需要图案形成的反应动力学相关的参数区域——我们提出了一种建设性的框架,用于识别在该区域内将表现出图灵不稳定性的系统,同时还允许选择所需的图案特征,例如斑点或条纹。特别是,我们展示了如何构建一个由多项式形态发生动力学控制的两个种群系统,使得:图案形成参数域(在任何空间维度)、形态发生物相(在任何空间维度),甚至是所得到的图案类型(在高达两个空间维度)都可以确定。最后,通过采用空间和时间异质性,我们证明了混合模式图案(斑点、条纹和复杂预图案)也是可能的,允许构建任意复杂的图案景观。这样的框架可以用于教学,也可以用于设计合成化学和生物图案系统的各种当代应用。我们还讨论了这种设计自由度在生物建模中使用反应扩散系统的影响,并建议在将理论与实验联系起来时需要更强的约束,因为给定选择反应动力学的自由度,许多简单的图案可以很容易地生成。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验