Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076, Aalto, Finland.
Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. Box 12200, 00076, Aalto, Finland.
Exp Eye Res. 2019 Oct;187:107675. doi: 10.1016/j.exer.2019.05.015. Epub 2019 May 22.
Non-damaging heating of the retina and RPE provides a promising treatment for retinal diseases. However, the lack of proper control over the temperature hinders the development of safe and repeatable procedures. Here, we demonstrate with mice a non-invasive method for estimating the temperature changes in the retina and the RPE during a heating procedure. The method is based on monitoring the temperature dependent properties of retinal photoresponses recorded by electroretinography (ERG). In this study, our aim was to investigate the feasibility of ERG signal for retinal temperature estimation, utilizing a-wave and b-wave kinetics as the source of temperature information. We quantified the temperature dependencies of photoresponse kinetics and developed two linear regression models between the temperature and the photoresponse features, enabling temperature estimation. With the first model, based on the a-wave of a single photoresponse, the RMS error obtained for retinal temperature estimation was <0.9 °C. The second model, applying the b-waves of five dim flash responses, an RMS error of <0.7 °C was achieved. In addition, we tested the sensitivity of the method to small changes in light stimulus strength and investigated suitable stimulus intervals for continuous retinal temperature monitoring. The proposed method provides a convenient technique for monitoring mouse retinal and RPE temperature with ERG recording when studying controlled retinal heating. Similar temperature dependencies exist in human ERG suggesting that this approach could also be applicable in clinical heating treatments.
视网膜和 RPE 的非损伤性加热为治疗视网膜疾病提供了一种很有前途的方法。然而,由于缺乏对温度的适当控制,安全且可重复的程序的发展受到了阻碍。在这里,我们通过小鼠证明了一种非侵入性的方法,可以在加热过程中估计视网膜和 RPE 中的温度变化。该方法基于监测视网膜光反应的温度依赖性特性,通过视网膜电图(ERG)进行记录。在本研究中,我们的目的是研究利用 a 波和 b 波动力学作为温度信息源的 ERG 信号进行视网膜温度估计的可行性。我们量化了光反应动力学的温度依赖性,并开发了两种线性回归模型,用于在温度和光反应特征之间建立关系,从而实现温度估计。使用基于单个光反应的 a 波的第一个模型,我们获得的视网膜温度估计 RMS 误差<0.9°C。应用五个弱闪光反应的 b 波的第二个模型,实现了 RMS 误差<0.7°C。此外,我们还测试了该方法对光刺激强度微小变化的敏感性,并研究了用于连续视网膜温度监测的合适刺激间隔。当研究受控视网膜加热时,该方法通过 ERG 记录为监测小鼠视网膜和 RPE 温度提供了一种便捷的技术。人类 ERG 中存在相似的温度依赖性,表明该方法也可能适用于临床加热治疗。