Electrical Engineering, Vanderbilt University, Nashville, TN, USA.
Computer Science, Vanderbilt University, Nashville, TN, USA.
Magn Reson Imaging. 2019 Sep;61:285-295. doi: 10.1016/j.mri.2019.05.016. Epub 2019 May 22.
Neuroimaging often involves acquiring high-resolution anatomical images along with other low-resolution image modalities, like diffusion and functional magnetic resonance imaging. Performing gray matter statistics with low-resolution image modalities is a challenge due to registration artifacts and partial volume effects. Gray matter surface based spatial statistics (GS-BSS) has been shown to provide higher sensitivity using gray matter surfaces compared to that of skeletonization approach of gray matter based spatial statistics which is adapted from tract based spatial statistics in diffusion studies. In this study, we improve upon GS-BSS incorporating neurite orientation dispersion and density imaging (NODDI) based search (denoted N-GSBSS) by 1) enhancing metrics mapping from native space, 2) incorporating maximum orientation dispersion index (ODI) search along surface normal, and 3) proposing applicability to other modalities, such as functional MRI (fMRI). We evaluated the performance of N-GSBSS against three baseline pipelines: volume-based registration, FreeSurfer's surface registration and ciftify pipeline for fMRI and simulation studies. First, qualitative mean ODI results are shown for N-GSBSS with and without NODDI based search in comparison with ciftify pipeline. Second, we conducted one-sample t-tests on working memory activations in fMRI to show that the proposed method can aid in the analysis of low resolution fMRI data. Finally we performed a sensitivity test in a simulation study by varying percentage change of intensity values within a region of interest in gray matter probability maps. N-GSBSS showed higher sensitivity in the simulation test compared to the other methods capturing difference between the groups starting at 10% change in the intensity values. The computational time of N-GSBSS is 68 times faster than that of traditional surface-based or 86 times faster than that of ciftify pipeline analysis.
神经影像学通常涉及获取高分辨率的解剖图像以及其他低分辨率的图像模态,如扩散和功能磁共振成像。由于配准伪影和部分容积效应,使用低分辨率图像模态进行灰质统计是一项挑战。与基于扩散研究的基于束流的空间统计学中采用的灰质基于空间统计学的骨架化方法相比,基于灰质表面的空间统计学(GS-BSS)已被证明使用灰质表面可以提供更高的灵敏度。在这项研究中,我们通过以下方式改进了 GS-BSS,纳入了神经突方向分散和密度成像(NODDI)的搜索(表示为 N-GSBSS):1)增强来自原始空间的度量映射;2)在表面法向上纳入最大方向分散指数(ODI)搜索;3)提出了将其应用于其他模态(如功能磁共振成像(fMRI)的适用性。我们在三个基线管道的比较中评估了 N-GSBSS 的性能:基于体积的配准、FreeSurfer 的表面配准和 fMRI 的 ciftify 管道。首先,定性地展示了具有和不具有 NODDI 搜索的 N-GSBSS 的平均 ODI 结果,并与 ciftify 管道进行了比较。其次,我们在 fMRI 中进行了工作记忆激活的单样本 t 检验,以表明该方法可以辅助低分辨率 fMRI 数据的分析。最后,我们通过在灰质概率图中感兴趣区域的强度值的百分比变化来进行模拟研究中的敏感性测试。与其他方法相比,N-GSBSS 在模拟测试中表现出更高的灵敏度,从强度值变化 10%开始就能捕捉到组间的差异。N-GSBSS 的计算时间比传统的基于表面的方法快 68 倍,比 ciftify 管道分析快 86 倍。