Nouls John C, Virgincar Rohan S, Culbert Alexander G, Morand Nathann, Bobbert Dana W, Yoder Anne D, Schopler Robert S, Bashir Mustafa R, Badea Alexandra, Hochgeschwender Ute, Driehuys Bastiaan
Duke University Medical Center, Department of Radiology, Durham, North Carolina, United States.
Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States.
J Med Imaging (Bellingham). 2019 Apr;6(2):021605. doi: 10.1117/1.JMI.6.2.021605. Epub 2019 May 15.
Three-dimensional (3D) printing has significantly impacted the quality, efficiency, and reproducibility of preclinical magnetic resonance imaging. It has vastly expanded the ability to produce MR-compatible parts that readily permit customization of animal handling, achieve consistent positioning of anatomy and RF coils promptly, and accelerate throughput. It permits the rapid and cost-effective creation of parts customized to a specific imaging study, animal species, animal weight, or even one unique animal, not routinely used in preclinical research. We illustrate the power of this technology by describing five preclinical studies and specific solutions enabled by different 3D printing processes and materials. We describe fixtures, assemblies, and devices that were created to ensure the safety of anesthetized lemurs during an MR examination of their brain or to facilitate localized, contrast-enhanced measurements of white blood cell concentration in a mouse model of pancreatitis. We illustrate expansive use of 3D printing to build a customized birdcage coil and components of a ventilator to enable imaging of pulmonary gas exchange in rats using hyperpolarized . Finally, we present applications of 3D printing to create high-quality, dual RF coils to accelerate brain connectivity mapping in mouse brain specimens and to increase the throughput of brain tumor examinations in a mouse model of pituitary adenoma.
三维(3D)打印对临床前磁共振成像的质量、效率和可重复性产生了重大影响。它极大地扩展了生产与磁共振兼容部件的能力,这些部件能够方便地定制动物处理方式,迅速实现解剖结构和射频线圈的一致定位,并提高通量。它允许快速且经济高效地创建针对特定成像研究、动物物种、动物体重甚至某一只独特动物定制的部件,这些部件在临床前研究中并不常用。我们通过描述五项临床前研究以及不同3D打印工艺和材料所实现的具体解决方案,来说明这项技术的强大之处。我们描述了为确保狐猴在脑部磁共振检查期间麻醉安全而制作的固定装置、组件和设备,或者为便于在胰腺炎小鼠模型中局部测量白细胞浓度并进行对比增强而制作的相关装置。我们展示了3D打印的广泛应用,即构建定制的鸟笼线圈和呼吸机部件,以实现对使用超极化气体的大鼠肺部气体交换进行成像。最后,我们介绍了3D打印在创建高质量双射频线圈方面的应用,以加速小鼠脑标本中的脑连接图谱绘制,并提高垂体腺瘤小鼠模型中脑肿瘤检查的通量。