Suppr超能文献

在缺锌条件下,枯草芽孢杆菌 FolE 由 ZagA 锌金属伴侣蛋白和应激素 ZTP 维持。

Bacillus subtilis FolE is sustained by the ZagA zinc metallochaperone and the alarmone ZTP under conditions of zinc deficiency.

机构信息

Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.

W.M. Keck Science Department, Claremont McKenna, Pitzer and Scripps College, Claremont, CA, 91711, USA.

出版信息

Mol Microbiol. 2019 Sep;112(3):751-765. doi: 10.1111/mmi.14314. Epub 2019 Jun 11.

Abstract

Bacteria tightly regulate intracellular zinc levels to ensure sufficient zinc to support essential functions, while preventing toxicity. The bacterial response to zinc limitation includes the expression of putative zinc metallochaperones belonging to subfamily 1 of the COG0523 family of G3E GTPases. However, the client proteins and the metabolic processes served by these chaperones are unclear. Here, we demonstrate that the Bacillus subtilis YciC zinc metallochaperone (here renamed ZagA for ZTP activated GTPase A) supports de novo folate biosynthesis under conditions of zinc limitation, and interacts directly with the zinc-dependent GTP cyclohydrolase IA, FolE (GCYH-IA). Furthermore, we identify a role for the alarmone ZTP, a modified purine biosynthesis intermediate, in the response to zinc limitation. ZTP, a signal of 10-formyl-tetrahydrofolate (10f-THF) deficiency in bacteria, transiently accumulates as FolE begins to fail, stimulates the interaction between ZagA and FolE, and thereby helps to sustain folate synthesis despite declining zinc availability.

摘要

细菌严格调节细胞内锌水平,以确保有足够的锌来支持基本功能,同时防止毒性。细菌对锌限制的反应包括表达属于 COG0523 家族的 G3E GTPases 亚家族 1 的假定锌金属伴侣蛋白。然而,这些伴侣蛋白的客户蛋白和代谢过程尚不清楚。在这里,我们证明枯草芽孢杆菌 YciC 锌金属伴侣蛋白(此处更名为 ZagA,用于表示 ZTP 激活的 GTPase A)在锌限制条件下支持从头叶酸生物合成,并与锌依赖性 GTP 环水解酶 IA(GCYH-IA)直接相互作用。此外,我们确定了预警素 ZTP(一种修饰的嘌呤生物合成中间体)在锌限制反应中的作用。ZTP 是细菌中 10-甲酰四氢叶酸(10f-THF)缺乏的信号,当 FolE 开始失效时,ZTP 会短暂积累,刺激 ZagA 和 FolE 之间的相互作用,从而有助于维持叶酸合成,尽管锌的可用性下降。

相似文献

2
The ancient alarmone ZTP and zinc homeostasis in Bacillus subtilis.
Mol Microbiol. 2019 Sep;112(3):741-746. doi: 10.1111/mmi.14332. Epub 2019 Jul 9.
7
Role of purine biosynthetic intermediates in response to folate stress in Escherichia coli.
J Bacteriol. 1990 Dec;172(12):7200-10. doi: 10.1128/jb.172.12.7200-7210.1990.
8
An ancient riboswitch class in bacteria regulates purine biosynthesis and one-carbon metabolism.
Mol Cell. 2015 Jan 22;57(2):317-28. doi: 10.1016/j.molcel.2015.01.001.
9
Zn-regulated GTPase metalloprotein activator 1 modulates vertebrate zinc homeostasis.
Cell. 2022 Jun 9;185(12):2148-2163.e27. doi: 10.1016/j.cell.2022.04.011. Epub 2022 May 17.

引用本文的文献

1
Microbial metal physiology: ions to ecosystems.
Nat Rev Microbiol. 2025 Jul 25. doi: 10.1038/s41579-025-01213-7.
3
The zinc metalloprotein MigC impacts cell wall biogenesis through interactions with an essential Mur ligase in Acinetobacter baumannii.
PLoS Pathog. 2025 Jun 16;21(6):e1013209. doi: 10.1371/journal.ppat.1013209. eCollection 2025 Jun.
4
The interplay between ZigA and SltB promotes zinc homeostasis and cell envelope integrity.
Infect Immun. 2025 Feb 18;93(2):e0042224. doi: 10.1128/iai.00422-24. Epub 2025 Jan 23.
5
Metals in Motion: Understanding Labile Metal Pools in Bacteria.
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.
6
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
7
The efflux system CdfX exports zinc that cannot be transported by ZntA in .
J Bacteriol. 2024 Nov 21;206(11):e0029924. doi: 10.1128/jb.00299-24. Epub 2024 Oct 30.
8
The metal-binding GTPases CobW2 and CobW3 are at the crossroads of zinc and cobalt homeostasis in .
J Bacteriol. 2024 Aug 22;206(8):e0022624. doi: 10.1128/jb.00226-24. Epub 2024 Jul 23.
9
Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis.
Annu Rev Microbiol. 2024 Nov;78(1):83-102. doi: 10.1146/annurev-micro-041522-091507. Epub 2024 Nov 7.
10
Coupling of zinc and GTP binding drives G-domain folding in Acinetobacter baumannii ZigA.
Biophys J. 2024 Apr 16;123(8):979-991. doi: 10.1016/j.bpj.2024.03.010. Epub 2024 Mar 8.

本文引用的文献

1
Multi-metal Restriction by Calprotectin Impacts De Novo Flavin Biosynthesis in Acinetobacter baumannii.
Cell Chem Biol. 2019 May 16;26(5):745-755.e7. doi: 10.1016/j.chembiol.2019.02.011. Epub 2019 Mar 21.
2
Bacterial sensors define intracellular free energies for correct enzyme metalation.
Nat Chem Biol. 2019 Mar;15(3):241-249. doi: 10.1038/s41589-018-0211-4. Epub 2019 Jan 28.
3
Bacterial zinc uptake regulator proteins and their regulons.
Biochem Soc Trans. 2018 Aug 20;46(4):983-1001. doi: 10.1042/BST20170228. Epub 2018 Jul 31.
5
Alternative ribosomal proteins are required for growth and morphogenesis of Mycobacterium smegmatis under zinc limiting conditions.
PLoS One. 2018 Apr 23;13(4):e0196300. doi: 10.1371/journal.pone.0196300. eCollection 2018.
6
Metallochaperones and metalloregulation in bacteria.
Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.
7
Metal homeostasis and resistance in bacteria.
Nat Rev Microbiol. 2017 Jun;15(6):338-350. doi: 10.1038/nrmicro.2017.15. Epub 2017 Mar 27.
8
Mechanism and catalytic strategy of the prokaryotic-specific GTP cyclohydrolase-IB.
Biochem J. 2017 Mar 7;474(6):1017-1039. doi: 10.1042/BCJ20161025.
9
Molecular logic of the Zur-regulated zinc deprivation response in Bacillus subtilis.
Nat Commun. 2016 Aug 26;7:12612. doi: 10.1038/ncomms12612.
10
Purine biosynthesis is the bottleneck in trimethoprim-treated Bacillus subtilis.
Proteomics Clin Appl. 2016 Oct;10(9-10):1036-1048. doi: 10.1002/prca.201600039. Epub 2016 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验