Paranagama Naduni, Bonnett Shilah A, Alvarez Jonathan, Luthra Amit, Stec Boguslaw, Gustafson Andrew, Iwata-Reuyl Dirk, Swairjo Manal A
Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, U.S.A.
Department of Chemistry, Portland State University, PO Box 751, Portland, OR 97207, U.S.A.
Biochem J. 2017 Mar 7;474(6):1017-1039. doi: 10.1042/BCJ20161025.
Guanosine 5'-triphosphate (GTP) cyclohydrolase-I (GCYH-I) catalyzes the first step in folic acid biosynthesis in bacteria and plants, biopterin biosynthesis in mammals, and the biosynthesis of 7-deazaguanosine-modified tRNA nucleosides in bacteria and archaea. The type IB GCYH (GCYH-IB) is a prokaryotic-specific enzyme found in many pathogens. GCYH-IB is structurally distinct from the canonical type IA GCYH involved in biopterin biosynthesis in humans and animals, and thus is of interest as a potential antibacterial drug target. We report kinetic and inhibition data of GCYH-IB and two high-resolution crystal structures of the enzyme; one in complex with the reaction intermediate analog and competitive inhibitor 8-oxoguanosine 5'-triphosphate (8-oxo-GTP), and one with a tris(hydroxymethyl)aminomethane molecule bound in the active site and mimicking another reaction intermediate. Comparison with the type IA enzyme bound to 8-oxo-GTP (guanosine 5'-triphosphate) reveals an inverted mode of binding of the inhibitor ribosyl moiety and, together with site-directed mutagenesis data, shows that the two enzymes utilize different strategies for catalysis. Notably, the inhibitor interacts with a conserved active-site Cys149, and this residue is S-nitrosylated in the structures. This is the first structural characterization of a biologically S-nitrosylated bacterial protein. Mutagenesis and biochemical analyses demonstrate that Cys149 is essential for the cyclohydrolase reaction, and S-nitrosylation maintains enzyme activity, suggesting a potential role of the -nitrosothiol in catalysis.
鸟苷 5'-三磷酸(GTP)环水解酶-I(GCYH-I)催化细菌和植物中叶酸生物合成的第一步、哺乳动物中生物蝶呤的生物合成以及细菌和古细菌中 7-脱氮鸟苷修饰的 tRNA 核苷的生物合成。IB 型 GCYH(GCYH-IB)是一种在许多病原体中发现的原核生物特异性酶。GCYH-IB 在结构上与参与人和动物生物蝶呤生物合成的典型 IA 型 GCYH 不同,因此作为潜在的抗菌药物靶点备受关注。我们报告了 GCYH-IB 的动力学和抑制数据以及该酶的两个高分辨率晶体结构;一个与反应中间体类似物和竞争性抑制剂 8-氧代鸟苷 5'-三磷酸(8-氧代-GTP)形成复合物,另一个在活性位点结合有三(羟甲基)氨基甲烷分子并模拟另一种反应中间体。与结合 8-氧代-GTP(鸟苷 5'-三磷酸)的 IA 型酶的比较揭示了抑制剂核糖基部分的反向结合模式,并且与定点诱变数据一起表明这两种酶利用不同的催化策略。值得注意的是,抑制剂与保守的活性位点半胱氨酸 149 相互作用,并且该残基在结构中被 S-亚硝基化。这是生物 S-亚硝基化细菌蛋白的首次结构表征。诱变和生化分析表明半胱氨酸 149 对于环水解酶反应至关重要,并且 S-亚硝基化维持酶活性,表明亚硝基硫醇在催化中可能发挥作用。