Capdevila Daiana A, Edmonds Katherine A, Giedroc David P
Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A.
Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, U.S.A.
Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.
Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.
细菌过渡金属稳态,或简称为“金属稳态”,描述了细胞控制从锰(Mn)到锌(Zn)等功能所需金属辅因子的细胞内可用性的过程,避免金属缺乏和毒性。金属稳态是脊椎动物宿主-病原体界面的一个新出现的方面,其定义为对生物必需金属的“拔河”,并为该领域最近的许多工作提供了动力。宿主采用多种策略使微生物病原体缺乏必需金属,而对于其他一些病原体,则试图通过利用具有高度竞争性的金属来限制细菌感染。细菌必须能够适应这些改变过渡金属格局的努力,并利用高度专业化的金属感应转录调节因子(称为金属调节蛋白)和金属伴侣蛋白,将金属分配到特定目的地,以介导这种适应性反应。在本文中,我们讨论了我们对这种适应性反应的结构机制和金属特异性理解的最新进展,重点关注在金属酶和金属传感器的金属辅因子活性位点组装中起作用的需要能量的金属伴侣蛋白,这些金属酶和金属传感器控制着对金属限制和中毒的系统水平反应。