Suppr超能文献

细菌中的金属伴侣蛋白与金属调节

Metallochaperones and metalloregulation in bacteria.

作者信息

Capdevila Daiana A, Edmonds Katherine A, Giedroc David P

机构信息

Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, U.S.A.

Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, U.S.A.

出版信息

Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.

Abstract

Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.

摘要

细菌过渡金属稳态,或简称为“金属稳态”,描述了细胞控制从锰(Mn)到锌(Zn)等功能所需金属辅因子的细胞内可用性的过程,避免金属缺乏和毒性。金属稳态是脊椎动物宿主-病原体界面的一个新出现的方面,其定义为对生物必需金属的“拔河”,并为该领域最近的许多工作提供了动力。宿主采用多种策略使微生物病原体缺乏必需金属,而对于其他一些病原体,则试图通过利用具有高度竞争性的金属来限制细菌感染。细菌必须能够适应这些改变过渡金属格局的努力,并利用高度专业化的金属感应转录调节因子(称为金属调节蛋白)和金属伴侣蛋白,将金属分配到特定目的地,以介导这种适应性反应。在本文中,我们讨论了我们对这种适应性反应的结构机制和金属特异性理解的最新进展,重点关注在金属酶和金属传感器的金属辅因子活性位点组装中起作用的需要能量的金属伴侣蛋白,这些金属酶和金属传感器控制着对金属限制和中毒的系统水平反应。

相似文献

1
Metallochaperones and metalloregulation in bacteria.
Essays Biochem. 2017 May 9;61(2):177-200. doi: 10.1042/EBC20160076.
2
Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface.
J Biol Chem. 2016 Sep 30;291(40):20858-20868. doi: 10.1074/jbc.R116.742023. Epub 2016 Jul 26.
4
Metal site occupancy and allosteric switching in bacterial metal sensor proteins.
Arch Biochem Biophys. 2012 Mar 15;519(2):210-22. doi: 10.1016/j.abb.2011.11.021. Epub 2011 Dec 8.
5
Multi-metal nutrient restriction and crosstalk in metallostasis systems in microbial pathogens.
Curr Opin Microbiol. 2020 Jun;55:17-25. doi: 10.1016/j.mib.2020.01.010. Epub 2020 Feb 12.
6
Recent developments in copper and zinc homeostasis in bacterial pathogens.
Curr Opin Chem Biol. 2014 Apr;19:59-66. doi: 10.1016/j.cbpa.2013.12.021. Epub 2014 Jan 22.
7
Metal sensor proteins: nature's metalloregulated allosteric switches.
Dalton Trans. 2007 Aug 7(29):3107-20. doi: 10.1039/b706769k. Epub 2007 Jun 28.
8
Molecular Evolution of Transition Metal Bioavailability at the Host-Pathogen Interface.
Trends Microbiol. 2021 May;29(5):441-457. doi: 10.1016/j.tim.2020.08.001. Epub 2020 Sep 18.
9
Illuminating allostery in metal sensing transcriptional regulators.
Methods Mol Biol. 2012;875:165-92. doi: 10.1007/978-1-61779-806-1_8.

引用本文的文献

1
Compatibility of intracellular binding: Evolutionary design principles for metal sensors.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2427151122. doi: 10.1073/pnas.2427151122. Epub 2025 Apr 30.
2
Direct genome-scale screening of Gluconobacter oxydans B58 for rare earth element bioleaching.
Commun Biol. 2025 Apr 30;8(1):682. doi: 10.1038/s42003-025-08061-4.
3
Structural basis for transcription activation through cooperative recruitment of MntR.
Nat Commun. 2025 Mar 5;16(1):2204. doi: 10.1038/s41467-025-57412-6.
4
Metals in Motion: Understanding Labile Metal Pools in Bacteria.
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.
5
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
6
Metalation of Extracytoplasmic Proteins and Bacterial Cell Envelope Homeostasis.
Annu Rev Microbiol. 2024 Nov;78(1):83-102. doi: 10.1146/annurev-micro-041522-091507. Epub 2024 Nov 7.
7
Omics technology draws a comprehensive heavy metal resistance strategy in bacteria.
World J Microbiol Biotechnol. 2024 May 6;40(6):193. doi: 10.1007/s11274-024-04005-y.
8
An ancient bacterial zinc acquisition system identified from a cyanobacterial exoproteome.
PLoS Biol. 2024 Mar 11;22(3):e3002546. doi: 10.1371/journal.pbio.3002546. eCollection 2024 Mar.
10
In the Alphaproteobacterium SoxR Serves a Sulfane Sulfur-Responsive Repressor of Sulfur Oxidation.
Antioxidants (Basel). 2023 Aug 16;12(8):1620. doi: 10.3390/antiox12081620.

本文引用的文献

2
Entropy redistribution controls allostery in a metalloregulatory protein.
Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4424-4429. doi: 10.1073/pnas.1620665114. Epub 2017 Mar 27.
3
The zinc efflux activator SczA protects Streptococcus pneumoniae serotype 2 D39 from intracellular zinc toxicity.
Mol Microbiol. 2017 May;104(4):636-651. doi: 10.1111/mmi.13654. Epub 2017 Mar 21.
4
Sulfide-responsive transcriptional repressor SqrR functions as a master regulator of sulfide-dependent photosynthesis.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2355-2360. doi: 10.1073/pnas.1614133114. Epub 2017 Feb 14.
5
A tight tunable range for Ni(II) sensing and buffering in cells.
Nat Chem Biol. 2017 Apr;13(4):409-414. doi: 10.1038/nchembio.2310. Epub 2017 Feb 6.
6
Structural Basis for the Selective Pb(II) Recognition of Metalloregulatory Protein PbrR691.
Inorg Chem. 2016 Dec 19;55(24):12516-12519. doi: 10.1021/acs.inorgchem.6b02397. Epub 2016 Nov 30.
7
Mechanism of Selective Nickel Transfer from HypB to HypA, Escherichia coli [NiFe]-Hydrogenase Accessory Proteins.
Biochemistry. 2016 Dec 13;55(49):6821-6831. doi: 10.1021/acs.biochem.6b00706. Epub 2016 Nov 30.
8
The mechanism of a formaldehyde-sensing transcriptional regulator.
Sci Rep. 2016 Dec 9;6:38879. doi: 10.1038/srep38879.
9
The iron-type nitrile hydratase activator protein is a GTPase.
Biochem J. 2017 Jan 15;474(2):247-258. doi: 10.1042/BCJ20160884. Epub 2016 Nov 2.
10
Molecular logic of the Zur-regulated zinc deprivation response in Bacillus subtilis.
Nat Commun. 2016 Aug 26;7:12612. doi: 10.1038/ncomms12612.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验