Inserm, IMRB U955-E10, 94000, Créteil, France.
Faculté de Médecine, Université Paris Est Créteil, 94000, Créteil, France.
Skelet Muscle. 2019 May 27;9(1):15. doi: 10.1186/s13395-019-0200-7.
The quantitative analysis of muscle histomorphometry has been growing in importance in both research and clinical settings. Accurate and stringent assessment of myofibers' changes in size and number, and alterations in the proportion of oxidative (type I) and glycolytic (type II) fibers is essential for the appropriate study of aging and pathological muscle, as well as for diagnosis and follow-up of muscle diseases. Manual and semi-automated methods to assess muscle morphometry in sections are time-consuming, limited to a small field of analysis, and susceptible to bias, while most automated methods have been only tested in rodent muscle.
We developed a new macro script for Fiji-ImageJ to automatically assess human fiber morphometry in digital images of the entire muscle. We tested the functionality of our method in deltoid muscle biopsies from a heterogeneous population of subjects with histologically normal muscle (male, female, old, young, lean, obese) and patients with dermatomyositis, necrotizing autoimmune myopathy, and anti-synthetase syndrome myopathy.
Our macro is fully automated, requires no user intervention, and demonstrated improved fiber segmentation by running a series of image pre-processing steps before the analysis. Likewise, our tool showed high accuracy, as compared with manual methods, for identifying the total number of fibers (r = 0.97, p < 0.001), fiber I and fiber II proportion (r = 0.92, p < 0.001), and minor diameter (r = 0.86, p < 0.001) while conducting analysis in ~ 5 min/sample. The performance of the macro analysis was maintained in pectoral and deltoid samples from subjects of different age, gender, body weight, and muscle status. The output of the analyses includes excel files with the quantification of fibers' morphometry and color-coded maps based on the fiber's size, which proved to be an advantageous feature for the fast and easy visual identification of location-specific atrophy and a potential tool for medical diagnosis.
Our macro is reliable and suitable for the study of human skeletal muscle for research and for diagnosis in clinical settings providing reproducible and consistent analysis when the time is of the utmost importance.
肌肉组织形态计量学的定量分析在研究和临床环境中变得越来越重要。准确严格地评估肌纤维大小和数量的变化,以及氧化(I 型)和糖酵解(II 型)纤维比例的改变,对于适当研究衰老和病理性肌肉以及诊断和随访肌肉疾病至关重要。用于评估切片中肌肉形态计量学的手动和半自动方法既耗时,又限于小的分析领域,并且容易产生偏差,而大多数自动化方法仅在啮齿动物肌肉中进行了测试。
我们开发了一个用于 Fiji-ImageJ 的新宏脚本,以自动评估数字图像中整个肌肉的人类纤维形态计量学。我们在来自具有组织学正常肌肉(男性、女性、老年、年轻、瘦、肥胖)的异质人群的三角肌活检以及皮肌炎、坏死性自身免疫性肌病和抗合成酶综合征肌病患者中测试了我们方法的功能。
我们的宏完全自动化,无需用户干预,并通过在分析前运行一系列图像预处理步骤来改进纤维分割。同样,与手动方法相比,我们的工具在识别纤维总数(r=0.97,p<0.001)、纤维 I 和纤维 II 比例(r=0.92,p<0.001)以及较小直径(r=0.86,p<0.001)方面表现出很高的准确性,而进行分析的时间约为 5 分钟/样本。该宏分析的性能在不同年龄、性别、体重和肌肉状态的受试者的胸肌和三角肌样本中得到维持。分析结果包括纤维形态计量学定量的 excel 文件和基于纤维大小的彩色编码图,这被证明是快速、轻松地识别特定部位萎缩的有利特征,并且可能是医学诊断的工具。
我们的宏是可靠的,适合研究人类骨骼肌,在时间至关重要的情况下,可为研究和临床诊断提供可重复且一致的分析。